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Introduction

The purpose of our work is to develop and test a new kind of imaging method
we call ”palpation imaging”. We expect that palpation imaging will be a
useful tool for improving the discrimination between benign and malignant
breast tumors. The scope of the effort in our first two years of funding was to
implement a newly-developed algorithm for motion tracking on a commercial
ultrasound imaging system and to begin testing that new imaging system.
The algorithm provides images of the mechanical strain induced in tissue by
pressing the ultrasound transducer against the skin surface. These images
are produced at substantially real-time frames rates with normal ultrasound
B-mode and strain images displayed side-by-side. The algorithm is fully
integrated into the commercial system and requires no system modifications.
Breast exams performed on volunteers have shown that the palpation imaging
study is almost identical to the standard clinical breast ultrasound exam.
With the patients examined to date, we find distinct strain image sequences
for cysts, fibroadenomas, and invasive ductal carcinomas. A comparison of
lesion area measured in B-mode versus strain images appears to provide good
discrimination between benign and malignant lesions with the data obtained
so far. This work is summarized in a manuscript published in Ultrasound in
Medicine and Biology 29(3): 427-35, 2003 (attached as Appendix 1 in the
annual report last year). ‘

The plans for the third and final year of the proposed effort included
a larger, more well-defined study of the performance of palpation imaging
for breast lesion classification. We planned to scan enough human subjects
to obtain at least 100 patients with biopsy of surgery-proven lesion type.

 Unfortunately, there has been a significant shortfall in the human subject

recruitment for this project. This is due to a lack of cooperation of the
clinician co-investigators involved in this project. The shortage of medical
staff and an increased demand to provide clinical care has left these co-
investigators with limited time for research activities. Those changes as well
as an outstanding opportunity resulted in the Principle Investigator, Timothy
Hall, leaving the University of Kansas Medical Center (KUMC) for a position
as a tenured Professor in the Medical Physics Department at the University
of Wisconsin-Madison (UW). The benefits of this change of environment
are wide-ranging and include a large department of investigators pursuing
advances in medical imaging, a vast pool of graduate students and post-
doctoral candidates to work with, and a medical staff actively involved in
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our research. , :
Expenditure of funds at KUMC ceased 18.Jan.2003, two days after Pro-
fessor Hall started work at UW. Although work has continued on this project,
at both KUMC and UW, no additional funds have been spent against the
grant. We have been working toward transferring this grant to UW since that
time. It appears that the process is nearly complete. Associated with the
grant transfer we have requested a one-year no-cost extension of this grant
period. This will provide ample time to complete that proposed study.

Body

Four of the six proposed Tasks (Tasks 1-3 and 6) have been addressed so far
within this project. The overall effort has been very successful and has drawn
attention of the elasticity imaging research community around the world. We
are extremely excited with our results to date and are very encouraged with
the potential for this new kind of imaging system. Below is a description of
the approved Tasks and the progress toward achieving each goal. '

Task 1. Implement real-time palpation imaging on a commercial sonog-
raphy system (months 1-4): a) Program the imaging system digital signal
processors to estimate strain from consecutive image frames. b) Develop a
user interface for controlling the data acquisition and processing parameters..
c) Test the system using eristing phantoms and laboratory fixtures with mo-
torized motion control to determine the penalty for using fized-point versus
floating point calculations.

This task has been completed, as described in the year-2 report. We are
grateful to SMSUG for their technical assistance in this effort. The soft-
ware we have developed is fully functional, and has gone through multiple
improvements. The current version displays 3 cm wide by 3.5 cm deep im-
age pairs at about seven frames per second (73.5 cm?/sec). That frame rate
is sufficiently fast to provide feedback to the hand-eye coordination system
to allow manipulating the conditions of tissue compression to consistently
obtain high-quality strain images. The manuscript that describes the imple-
mentation of this algorithm and initial testing for displacement variance is
published (Ultrasonic Imaging 24(3): 161-176, 2002).

Task 2. Develop data acquisition techniques that provide high-quality
palpation images without the use of fiztures (months 3-12): a) Implement
techniques that mimic those used for phantom imaging including small hand-




held fiztures to restrict motion perpendicular to the image plane. b) Test those
techniques in phantoms and compare target contrast-to-noise ratio for labora-
tory (large motorized fixtures, controlled motion) versus clinical (small hand-
leld firtures, restricted motion) systems. c) Test the clinical systems (real-
time palpation imaging with small firtures) using anthropomorphic breast
phantoms. d) Test the clinical systems on volunteer patients with palpable
breast abnormalities. e) Modify the data acquisition techniques to eliminate
the need for fiztures to restrict motion while maintaining image quality. f)
Measure conspicuity of breast lesions to assess the relatwe merit of different
data acquisition techniques.

This task has been completed, as described in the year-2 report. Iter-
ating between what we learned with freehand scanning of phantoms, then
in vivo breasts, and back to phantoms, we found that the key to obtaining
sequences of high-quality strain images (high contrast-to-noise and high sim-
ilarity from frame to frame) with freehand scanning is high frame rate. The
scanning technique for breast palpation imaging is nearly identical to that
used in typical breast sonography with compression. The subject lies on her
back with her arm behind her head and the ultrasound transducer is pressed,
by hand, toward the chest wall. The real-time image feedback allow manip-
ulation of the compression conditions while scanning. This manipulation is
essential for obtaining long sequences of low noise strain image data (often
100 image frames).

Task 3. Implement hzgh quality palpation imaging algorithm on a com-
mercial sonography system and perform preliminary tests of image quality
(months 7-17): a) Program the commercial sonography system to calculate
high-resolution, low-noise palpation images as quickly as possible over a large
region of interest. b) Develop a user interface that allows manipulation of
the image formation algorithm for the trade-off between spatial resolution
and image noise. c) Test the high-quality algorithm on (geometrically) sim-
_ ple and anthropomorphic phantoms using the modified data acquisition tech-
niques (Task 2.e). d) Use the real-time palpation imaging technique to locate
the desired region of interest and obtain sonographic data with the appro-
priate pre- and post-compression for volunteer patients with palpable breast
abnormalities. and Task 6. Investigate the use of novel techniques, such as
harmonic imaging and spatial quadrature, for 2mp1"oved information content
in palpation images (months 18-36).

This area of work has been our dominant effort since the first year of
support. As described in the year-1 report, we can estimate displacement
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and strain accurately in inhomogeneous media (tissue) with greater success
than originally anticipated. The key to this success is real-time imaging of
strain that guides manipulation of the conditions of compression.

As described in previous reports, we have implemented three displace-
ment and strain estimation algorithms on the Elegra. The simplest of these
is the algorithm that runs in real-time for data acquisition. This uses our
patented adaptive search strategy to predict the deformation based on previ-
ous displacement estimates. This adaptive search reduces the computational
load for strain estimation by more than a factor of 100. The algorithm also
decimates the data, thereby reducing the number of displacement estimates
in a given region of interest. This algorithm is used primarily for data ac-
quisition during freehand scanning and is a compromise between frame rate
and image quality. To halt data acquisition, the system ‘freeze’ button is
pressed, just as in normal sonography, and the echo data are available for
on-line post-processing. This same (real-time) strain imaging algorithm can
be used to reprocess that data as the user scrolls through image memory, or
one of the other algorithms can be used. The second algorithm is identical
to the first except that the data is not decimated. Estimating displacement
-with higher data density reduces the displacement variance in the adaptive
search strategy resulting in a slight improvement in image quality. The third
algorithm operates on the full data field (no decimation) and does not use the
adaptive search strategy, instead using a full 2-D search. This approach is
much more computationally intensive, requiring about one second per strain
image frame, but produces images that lack the displacement error accumu-
lation that can result from the adaptive search strategy.

We are continuing to investigate options to further improve image qual-
ity, as described in the year-2 annual report. These advances are expected
to significantly improve on-line post-processed images. As a result of that
effort it has become clear that subjective visual assessment of image ‘qual-
ity’ and lesion conspicuity are not sufficient to quantify differences among
motion tracking algorithms. As a result, we are working on a quantitative
method for measuring the accuracy of motion tracking in tissues in addition
to the estimates of displacement estimate error variance that are commonly
reported. This work is very early in development, and is not expected to be
completed during this project period. But, the approach shows great promise
for comparing the relative performance of various motion tracking algorithms
and parameter selection for a specific algorithm.

To date we have scanned 56 volunteers at KUMC. Some of these patients
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had multiple lesions, and some were scanned on repeat occasions (perpendic-
ular image planes, repeat visits, different transducers, etc). As reported last
~ year, the excitement from the potential for palpation imaging and the de-
lay at KUMC in obtaining a sufficient number of patients to adequately test
this technology resulted in Siemens contracting with two other institutions to
test our technology (Charing Cross Hospital in London, UK and Mayo Clinie,
Rochester, MN). Those sites have been quite productive in their trials. To
date the Charing Cross group has scanned over 200 breast patients and the
Mayo group has scanned over 100 patients. Each found that they became
proficient in their scanning technique within 10-15 patients, and they find
that palpation imaging adds, on average, about five additional minutes to
the normal breast ultrasound examination. The key to strain imaging, as
in standard sonography, is training. With real-time feedback of the current
strain images being acquired, the key is interpreting the data and making cor-
rections to the technique, if necessary. In summary, the tools are adequate,
the key to success is training. ' -
As described in the previous annual reports, we have demonstrated ev-
idence for changing strain image contrast in fibroadenomas as the surface
pressure increases. Support for that observation continues to build, and that
behavior continues to appear unique to fibroadenomas. The previous an-
nual reports also described the frame-to-frame variability of strain images
for cysts. Although those observations are still true of the cysts, our empha-
sis in data acquisition has been on solid lesions. We also provided evidence
in previous reports describing the frame-to-frame similarity in strain images
of invasive ductal carcinomas and evidence demonstrating that the apparent
size of a carcinoma in strain images is larger than that seen in the B-mode
images. Results reported in year—1 were for measurements performed by the
- PI. A more extensive study, described below, was reported at the Radiological
Society of North America meeting in November 2002.
Garra, et al., (Radiology 202: 79-86, 1997) suggested that the width of
"a carcinoma. in a strain image is typically larger than that measured in a
B-mode image. Our results support that observation, and apparently extend
its diagnostic utility, as described in the previous annual reports. To begin
designing the experiments for Tasks 4 and 5, we asked five observers (the PI
and four ultrasound clinicians) to view each sequence of side-by-side B-mode
and strain images from the KUMC data. From each sequence, each observer
had to choose an image pair that represented the typical view of the lesion
in both B-mode and strain images. That image pair was then displayed
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and the observer had to trace the lesion boundary in the B-mode image and
measure the lesion height and width. The image pair was then re-displayed
and the observer traced the lesion in the strain image and measure the lesion
height and width. The combined average results for lesion measurements
were shown in the year-2 report. A receiver operating charateristic (ROC)
analysis of those measurements resulted in an overly-optimistic diagnostic
.accuracy of 0.983+0.028—mnearly perfect performance. Although this is a
very encouraging results, it cannot be trusted for several reasons including
the small size of the patient pool, correlations among the data (multiple
lesions in a single patient included in the study), and the limited variety of
lesion types (invasive ductal carcinomas, fibroadenomas and cysts).

However, this work demonstrates that we are following a solid research
plan. By increasing the size of the study population, and comparing the
change in diagnostic accuracy when using standard sonography versus sonog-
_ raphy plus palpation imaging, we can test the utility of palpation imaging as
a diagnostic tool with ROC analysis and multi-observer measurements.

Our current plans are unchanged from those in the proposal and current
protocol, except for the change of institution and the use of data from outside
this funded project. We are well prepared to complete the final two tasks
of the study: Tasks 4. Acquire sonograms, elastograms, and mammograms
on patients with suspicious lesions that are either palpable or detectable with
sonography or mammography (months 18-82; >100 patients)and
Task 5. Compare diagnosis of breast lesions with and without the use of
palpation imaging. (months 80-36; using images obtained in Task 4).

Key Research Accomplishments

e The motion tracking algorithm has been implemented on the Siemens
SONOLINE Elegra and displays B-mode and strain i 1mages side-by-side
at about seven frames per second.

e We found that the key to obtaining high-quality in vivo strain images
of the breast is to form the images in “real-time,” that is, fast enough to
provide the hand-eye coordination system sufficient feedback to control
the conditions of tissue deformation.

e We have developed scanning techniques for acquiring strain image data
from in vivo breasts that provides reproducible results. The technique
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is nearly identical to typical breast sonography with compression, so it
is relatively easy to learn and clinicians are likely to adopt the practice.

e There is no significant difference between the displacement variance
(strain image noise) for freehand scanning versus motorized compres-
sion for strain imaging.

e We have found that the frame-to-frame strain patterns from various
breast abnormalities appears to be unique to the abnormality. For ex-
ample, the fluid within cysts appears to be ‘stirred’ when deformed in -
palpation imaging, and that ‘stirring’ causes the rf echo signal, and
therefore the strain image, to decorrelate rapidly with time. We have
also found that the strain contrast for fibroadenomas is not constant
with compression; at very low surface pressure fibroadenomas are stiffer
than their surroundings and provide high negative contrast. With in-
creased surface pressure that contrast is often significantly reduced;

Invasive ductal carcinomas maintain a high negatlve contrast at all = -

surface pressures tested.

e We have found that by comparing the area of a lesion measured on
the standard ultrasound B-mode image with area measured on a strain
image, benign lesions have nearly equal area on both modalities but
invasive ductal carcinomas are significantly larger on the strain image
than in B-mode. ’ ’

e The diagnostic criterion of comparing lesion size in B-mode versus
strain images appears to be a strong criterion among a group of five
observers. It must be noted that this was a relatively small data set
with some lesions that were easily classified without the benefit of pal-
pation imaging results. This criterion will be further tested in Tasks 4
and 5.

Reportable Outcomes

Manuscripts

. “In vivo real-time frechand palpation imaging,” Timothy J. Hall, Yan-
ning Zhu, and Candace S. Spaldmg Ultrasound Med Biol 29(3): 427-
35, 2003.
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2. “A modified block matching method for real-time freechand strain imag-
ing,” Yanning Zhu and Timothy J. Hall. Ultrasonic Imaging 24(3):
161-176, 2002.

3. “A Finite Element Approach for Young’s Modulus Reconstruction,”
Yanning Zhu, Timothy J. Hall and Jingfeng Jiang. IEEE Trans Med
Imaging 22(7): 890-901, 2003.

4. “Noise reduction strategies in freehand elasticity imaging” Timothy J.
Hall, Jingfeng Jiang, Yanning Zhu, and Larry T. Cook, 2002 IEEE
Ultrasonics Symposium Proceedings 02CH37388C: 1877 -1880, 2002.

5. “Beyond the basics: elasticity imaging with ultrasound,” Timothy J.
Hall Radiographics (to appear Nov.2003).

Abstracts

1. Hall TJ, Svensson W, Von Behren P, Malin J, Zhu Y, Spalding C,
Hall M, Connors A, Lowery C, “Differentiating malignant from benign
breast lesions noninvasively using real-time palpation imaging,” J Ul
trasound Med 29(5s):593, 2003.

2. Hangiandreou NJ, Meixner DD, Hesley GK, Farrell MA, Morton MJ,
Charboneau JW, Hall TJ, Zhu Y, Spalding CS, “Ultrasound strain im-
age data obtained in breast masses: Preliminary quantitative analysis,”

J Ultrasound Med 29(5s): s178, 2003.

3. Cook LT, Zhu Y, Hall TJ, “Comparing one-dimensional and two-dimensional
kernels for tracking two-dimensional motion ultrasonic echo data,” J
Ultrasound Med 29(5s): 5206, 2003. '

4. Hall TJ, “Elasticity imaging phantoms,” J Ultrasound Med 29(5s):
s207, 2003. j '

5. Cook LT, Zhu Y, Hall TJ, “The effect of kernel size on ultrasonic
displacement estimation,” Ultrasonic Imaging 25:56-7, 2003.

6. Zhu Y, Hall TJ, Cook LT, Jiang J, “Young’s modulus reconstruction
using ultrasound,” Ultrasonic Imaging 25:64-65, 2003.
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Presentations

Conference Presentation

1. “In Vivo Results of Real-Time Freehand Elasticity Imaging” by Hall
TJ, Zhu Y, Spalding CS, Cook LT. Presented at the 2002 IEEE Ultra-
sonics Symposium, Munich, Germany, October, 2002.

2. “Lesion size measurement in palpation imaging” by Hall TJ, Spalding
C, Hall M, Von Behren P, Zhu Y, Mayo M, Cook LT. Presented at
the 88th Scientific Assembly and Annual Meeting of the Radiological
Society of North America, Chicago, Illinois, December 2002.

3. “Differentiating malignant from benign breast lesions noninvasively us-
ing real-time palpation imaging,” by Hall TJ, Svensson W, Von Behren
P, Malin J, Zhu Y, Spalding C, Hall M, Connors A, Lowery C. Pre-
sented at the American Institute of Ultrasound in Medicine Annual
Convention, Montreal, Canada, June 2003.

4. “Ultrasound strain image data obtained in breast masses: Prelimi-
nary quantitative analysis” by Cook LT, Zhu Y, Hall TJ. Presented
at the American Institute of Ultrasound in Medicine Annual Conven-
tion, Montreal, Canada, June 2003 (poster).

5. “Elasticity imaging phantoms” by Hall TJ. Presented at the Ameri-
can Institute of Ultrasound in Medicine Annual Convention, Montreal,
Canada, June 2003 (poster).

6. “Ultrasound strain image data obtained in breast masses: Preliminary
quantitative analysis” by Hangiandreou NJ, Meixner DD, Hesley GK,
Farrell MA, Morton MJ, Charboneau JW, Hall TJ, Zhu Y, Spalding
CS. Presented at the American Institute of Ultrasound in Medicine
Annual Convention, Montreal, Canada, June 2003 (poster).

- 7. “Young’s modulus reconstruction using ultrasound” by Zhu Y, Hall TJ,
Cook LT. Presented at the 28th International Symposium on Ultrasonic
Imaging and Tissue Characterization, Arlington, Virginia, May 2003.

8. “The effect of kernel size on ultrasonic displacement estimation” by
Cook LT, Zhu Y, Hall TJ. Presented at the 28th International Sym-
posium on Ultrasonic Imaging and Tissue Characterization, Arlington,
Virginia, May 2003. '
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Invited Symposia

1. “Beyond the basics: elasticity imaging with ultrasound,” Timothy J.
Hall Presented at the 88th Scientific Assembly and Annual Meeting of
the Radiological Society of North America, Chicago, Illinois, December
2002.

Patents

1. Patent No. 6,508,768 B1, 21.Jan.2003 “Ultrasonic Elasticity Imaging”
by Timothy J. Hall and Yanning Zhu.

Funding Applied For |

1. IRO1CA94057-01 “3-D Palpation Imaging with Ultrasound,” Yanning
Zhu, PI (resubmitted) .

2. 1R01CA100373 “Palpation Imaging,” Timothy J. Hall, PI (reviewed
June 2003, scored 176, 19.3 percentile, council action pending)

3. SBIR “Absolute 3-D tactile imaging,” Jae Son, Medical Tactile Sys-
tems, Inc. PI (resubmitted July 2003).

. Conclusions

Our initial research plan included the development and initial testing of a
method for real-time imaging of mechanical strain in tissue and is proceeding
as planned. Our success in this effort far exceeds our anticipated results. The
phantom studies proposed proved far too simple to evaluate the the merit
of this technique, but the in vivo results demonstrate the reproducibility of
strain imaging. Measurements of lesion size in strain images compared to B-
mode images appears to be a sensitive diagnostic criterion for discriminating
malignant from benign lesions. Further improvements in the motion tracking
algorithm will make strain imaging more robust and increase the confidence
of the sonographer. Our results to date indicate that real-time palpation
imaging has the potential to significantly improve the diagnosis of breast
abnormalities. This new tool runs as a software application on an existing
clinical sonography system and is therefore easily distributed broadly when it
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is an appropriate product. Our software is computationally intensive, but it
is expected that future sonography systems from all manufacturers will have
sufficient computational capacity to support this application. Wide-spread
use would likely follow, if our current results are representative. We look
forward to continued success.

Appendices

1. “In vivo real-time freehand palpation imaging,” Timothy J. Hall, Yan-
ning Zhu, and Candace S. Spalding. Ultrasound Med Biol 29(3): 427-
35, 2003.

2. “A modified block matching method for real-time freehand strain imag-
ing,” Yanning Zhu and Timothy J. Hall. Ultrasonic Imaging 24(3):
161-176, 2002. ,

3. “A Finite Element Approach for Young’s Modulus Reconstruction,” .
Yanning Zhu, Timothy J. Hall and Jingfeng Jiang. IEEE Trans Med
Imaging 22(7): 890-901, 2003.

4. “Noise reduction strategies >in freehand elasticity imaging” Timothy J.
Hall, Jingfeng Jiang, Yanning Zhu, and Larry T. Cook, 2002 IEEE
Ultrasonics Symposium Proceedings 02CH37388C: 1877 -1880, 2002.

5. “Beyond the basics: elasticity imaginngith ultrasound,” Timothy J.
Hall Radiographics (to appear Nov.2003).
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IN VIVO REAL-TIME FREEHAND PALPATION IMAGING

TmvoTHY J. HALL, YANNING ZHU and CANDACE S. SPALDING
Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA

(Received 26 February 2002; in final form 23 October 2002)

Abstract—Previous experience with laboratory fixtures and off-line processing of elasticity data showed that
problems occurring in data acquisition often resulted in poor elasticity image quality. A system for real-time
estimation and display of tissue elastic properties using a clinical ultrasonic imaging system has been developed.
A brief description of that system and the initial clinical tests of that system are reported. Experience with
real-time frechand elasticity imaging shows that images with high contrast-to-noise ratios are consistently
obtained. Images of breast lesions were acquired with freehand palpation using standard linear-array ultrasound
(US) transducers. Results in volunteer patients show that high-quality elasticity images are easily obtained from
in vivo breast studies. The key element to successful scanning is real-time visual feedback of B-mode and strain
images that guide the patient positioning and compression direction. Results show that individual images of axial
strain in tissues can be quite misleading, and that a “movie loop” of side-by-side B-mode and strain images
provides significantly more information. Our preliminary data suggest that the strain image sequences for
various breast pathologies are unique. For example, strain images of fibroadenomas lose contrast with increasing
precompression, but those of invasive ductal carcinoma have high negative contrast (dark relative to “normal”
tissue) for a wide range of precompression. In addition, a comparison of the lesion area measured in B-mode vs.
strain images, for a representative image from the sequence, appears to be a sensitive criterion for separating
invasive ductal carcinoma from cyst and fibroadenoma. (E-mail: thall@wisc.edu) © 2003 World Federation for

Ultrasound in Medicine & Biology.

Key Words: Ultrasound, Tissue characterization, Elasticity, Palpation, Elastography.

INTRODUCTION

The potential for improving the qualitative nature of
palpation by imaging quantitative measures of tissue
viscoelasticity has generated a great deal of interest
world-wide. Our initial efforts focused on modeling dis-
placement and strain, developing algorithms for dis-
placement and strain estimation, and testing those tech-
niques in phantoms and in kidneys in vitro (see, for
example, Chaturvedi et al. 1998a, 1998b; Hall et al.
1997; Insana et al. 1997; Zhu et al. 1998). Significant
effort was expended on developing high-order motion
estimators for tracking fine-scale motion. However, little
data were available to investigate the need or utility of
the high-order motion-estimation techniques for in vivo
imaging of tissues.

~ The first report testing the utility of strain imaging in
breast lesion imaging (Garra et al. 1997) clearly demon-
strated that strain imaging had merit in breast lesion

Address correspondence to: Timothy J. Hall, Medical Physics
Department, 1530MSC, 1300 University Ave, Madison, W1 53706
USA. E-mail: tjhall@wisc.edu
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discrimination. The data-acquisition system employed a
modified mammography compression paddle and, there-
fore, was limited in the lesion locations that could be
studied. Also, only (nonreal-time) static strain images
were available. In that report, Garra et al. (1997) de-
scribed a set of criteria applied to evaluate strain imaging
combined with normal B-mode imaging. Among those
criteria were lesion visibility, relative brightness, lesion
margin regularity, lesion margin definition, lesion size
(lateral and axial) and B-mode image measurements rel-
ative to strain image and pathology measurements.
Among their findings, they noted that benign lesions
have about the same width on B-mode and strain images,
but that the height measurement had lower confidence
due to axial blurring in strain image formation and dif-
ficulty in determining lesion boundaries with shadows
due to high attenuation. Fibroadenomas typically had
heterogeneous stiffness; cancers were uniformly stiffer
than their surroundings in all but one case.

The purpose of the present study was to test the
utility of performing strain imaging in real-time on a
commercial ultrasound (US) imaging system and to test
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one of the strain image criteria described by Garra et al.
(1997) with data acquired from this new system. Results
demonstrate the value in real-time side-by-side display
of B-mode and strain images for guiding data acquisition
and data interpretation. Comparisons among various le-
sion types studied in vivo show a significant difference in
the strain image sequence for fibroadenomas, cysts and
carcinoma, and help to explain some of the difficulties in
data interpretation described by Garra et al. (1997). Our
results are generally consistent with those found by
Garra and colleagues, but the differences we found in
carcinoma size in B-mode and strain images are greater,
and aH lesions found in sonography or mammography,
whether palpable or not, were visible with our tech-
niques. These results will help to guide future strain-
imaging data acquisition and provide further evidence
for the potential of elasticity imaging in breast lesion
discrimination.

MATERIALS AND METHODS

The motion-tracking algorithm, its implementation
on the commercial clinical US, imaging system and
performance measurements in experiments with phan-
toms are reported elsewhere (Zhu and Hall 2002). The
essential details are included here for the convenience of
the reader.

Strain image formation

A 2-D block-matching algorithm, based on the sum-
squared difference (SSD) method, was used for motion
tracking in our implementation. With this method, mo-
tion is tracked by searching for a kernel of data from the
precompression radio frequency (RF) echo data in a 2-D
search region of the postcompression RF echo field. A
fixed kernel size (five A-lines by 11 RF samples) was
used with both the 7.5L40 (with and without tissue
harmonic imaging, THI) and the VFX13-5 linear arrays
for the system employed (Siemens SONOLINE Elegra,
Issaquah, WA). The data are temporally sampled at 36
MHz with a lateral beam spacing of 200 wm. Therefore,
the kernel size corresponds to about about one half the
area of the 2-D pulse-echo US point spread function for
the 7.5L40 array pulsed at 7.2 MHz. A small kernel was
chosen because the assumption of rigid body motion is
increasingly accurate as the size of the kernel is de-
creased, and because spatial resolution is expected to
improve with smaller kernels. No attempt to optimize the
kemnel size was pursued in this study. Kernel size opti-
mization will likely be task-dependent and will be ad-
dressed in future work.

Data were processed on the image processor sub-
system of the Elegra. This subsystem hosts two Texas
Instruments TMS320C80 processors. To reduce the com-
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putational load (required to achieve real-time frame
rates), an adaptive search strategy was developed that
reduces the size of the required search region in perform-
ing the SSD block matching. Displacements are esti-
mated (for real-time imaging) with kernels that are sep-
arated by 16 RF samples center-to-center (no spatial
overlap of displacement estimates). Displacements are
estimated row-by-row, and the prior row of estimates are
used to predict displacements in the current row, allow-
ing the search region to be reduced to within one RF
sample in each direction of the predicted displacements.
The use of predicted displacements results in correlated
displacement errors, and an error detection and correc-
tion scheme was also implemented. Strain is estimated
from the displacement data using a linear regression
technique similar to that described by Kallel and Ophir
(1997). For real-time imaging, linear regression is per-
formed with a 24-sample window (about 4 mm) that is
incremented one displacement sample for each strain
estimate. The resulting algorithm displays streaming B-
mode and strain images side-by-side at about seven
frames per second and stores the full sequence of I-Q
(analytic form of the RF) echo data at full system bus
speed. The stored data, which were acquired at a higher
frame rate than the real-time display, can then be online
postprocessed with the same displacement algorithm or

_ other algorithms (not reported here), the size and location

of the subregion-of-interest (SROI) can be adjusted, the
grey-scale mapping can be modified, etc., and the results
displayed frame-by-frame or as a cine loop.

Although the additional degrees of freedom of mo-
tion allowed with freehand compression, compared with
motorized compression, were expected to result in an
increase in displacement estimate error variance, that
variance is only slightly higher for freehand compression-
(Zhu and Hall 2002). Given that the contrast and reso-
lution of the strain-imaging system do not depend on the
method of tissue deformation, displacement estimate er-
ror variance (resulting in strain image noise) is the dom-
inant image quality parameter that will differ with the
two methods of tissue deformation. With equal applied
strain, motorized and freehand compression have com-
parable strain image noise. However, the frame-to-frame
strain is not constant with freehand compression (as
described below). This results in frame-to-frame vari-
ability in strain image quality with freehand scanning.

Small (e.g., 2.4-mm diameter) isoechoic spherical
targets in a phantom are considerably easier to locate and
scan freehand than with motorized compression. The size
of spherical targets measured from the resulting strain
images is very close to their true dimensions (both height
and width, see Zhu and Hall 2002), so both linear and
area measurements in strain images in vivo should be
accurate. '
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The grey-scale mapping of these strain images con-
forms with the de facto standard of mapping pixels,
representing small strains dark and large strains bright.
Typically, a sinusoidal (freehand) compress/release cy-
clic deformation was used and the acquired data con-
tained one or more complete cycles. At the top and
bottom of the stroke, there is little motion and, occasion-
ally, there were brief hesitations during the motion. A
consequence of freechand scanning is that the frame-to-
frame strain is not constant. To compensate for that
variability in average strain, the grey-scale for individual
strain images (in the sequence of B-mode and strain
images) was automatically adjusted to minimize bright-
ness flicker. With this scaling, strain images that had an
average strain of less than 0.15% were set to black. These
frames rarely occur, but are most common at the top and
bottom of the cyclic compression. Frames with greater
than 0.15% compression were encoded as follows:

ksl = Smin
sk, 1) = round [ B D 8w )

S'max
Spax — 0.05

min

where s,(k, 1) is the encoded strain value at position (&, ), .

and s, and s,,;, are the maximum and minimum strain
values in the frame, and round() is a function that rounds
to the nearest integer. After scaling, the results are en-
coded into an 8-bit display range. This simple scaling
provides a reasonably constant strain image brightness
through the compression cycle, in the absence of signif-
icant displacement estimation errors. Large displacement
estimation errors sometimes occur and this automatic
grey-scale mapping can be dominated by erroneous dis-
placement estimates.

Patient scanning :

All patients provided informed consent consistent
with the protocol approved by the Human Subjects Com-
mittee (Institutional Review Board) at The University of
" Kansas Medical Center. Patient scans were performed in
a manner consistent with a normal breast US examina-
tion; the breast was scanned with the patient (typically)
in the supine position with her ipsilateral arm behind her
head. When the breast lesion was located, SROI was
chosen that would avoid inappropriate data (lungs, areas
of lost transducer contact, etc.) and the transducer ‘'was
pressed toward the chest wall at a steady rate in an effort
to achieve about 1-1.5% compression frame-to-frame.
Subregion selection also typically excluded the retro-
mammary fat layer and the chest wall. The soft fat, the
stiff muscle and the slipping boundary between these
layers can also dominate the dynamic grey-scale map-
ping. In some cases, for example, when scanning lateral

lesions in large. (D-cup) breasts, the patient was rolled
slightly to her contralateral side so that gravity would
flatten the breast tissue in the region to be scanned. A
small plate (approximately 45-mm wide, 90-mm long)
was sometimes attached to the transducer body to extend
the compression surface in an effort to provide a more
uniform stress field and to control motion perpendicular
to the image plane. The compress/release cycle was
repeated for relatively large (> 10%) compression range,
while watching the B-mode image. The compression
motion was adjusted by changing the compression direc-
tion or patient position until there was nearly uniaxial
compression with minimal elevation motion. With this
achieved, the strain-imaging software was enabled to
evaluate the quality of the sequence of strain images. If
a large sequence (= 30 frames) of strain images had
good image quality (relatively high contrast-to-noise ra-
tio) and high frame-to-frame similarity, the data acqui-
sition was frozen, the image sequence stored, and the
cine feature of this software was used to review, post-
process and select images to record. If the compression
rate was too slow, resulting in low frame-average strain,
the interframe skip was adjusted to increase the strain
between frame pairs used in displacement and strain
estimation, as suggested by Lubinski et al. (1999). Rep-
resentative results obtained when scanning a 3-mm cyst
are shown in Fig. 1. The average strain per frame (Fig.
1b) suggests nearly ideal compression rate in this case.
Consecutive frames were paired for displacement esti-
mation when analyzing this sequence of data. The cu-
mulative strain in the sequence (Fig. 1c), obtained by
summing the strain in consecutive frames, demonstrates
that about an 18% compression range was achieved in
this study. The initial value on the ordinate axis in each
plot was set to zero and (the frame-average) strain was
accumulated (Fig. 1c) from that starting point. If, for
example, there was a net compression of the tissue in the
first frame pair, the initial average strain was negative
and the first value on the cumulative frame plot was
negative. Data acquisition was frozen by the operator
when an acceptable image sequence was acquired. The
starting and ending points of that sequence could be at
any point in the cyclic motion. Therefore, the precom-
pression at the starting point is a random value between
the minimum and maximum precompression.

RESULTS

One of the most promising uses of strain imaging is
differentiation among breast lesions. To date, we have
successfully scanned 39 patients with over 175 patient
scans (multiple lesions per patient, repeat visits, perpen-
dicular scan planes, different transducers and THI). Data
from only 29 of these patients are included in this study
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Fig. 1. Data obtained by freehand scanning of a breast cyst in
vivo. (a) A B-mode and strain image pair obtained for frame 51
in the sequence. The white box in the B-mode image defines the
ROI for strain imaging. (b) The average strain in the ROI; (c)
the cumulative strain in the ROIL The arrows in (b) and (c)
indicate that a sequence of frames was acquired with nearly
equal average strain in each frame but with varying cumulative
strain (precompression).

(data from patients with surgical scars or closely spaced
lesions were excluded, as described below). Among
these 29 patients, 19 fibroadenomas, 29 cysts and 7
carcinomas were included in this study. Ten of the fi-
broadenomas, at least five of the cysts and four of the

carcinomas were palpable. All fibroadenomas were ei- -

ther pathologically proven or had been stable under ra-
diological investigation for more than 1 year. All carci-
nomas were pathologically proven. Both simple and
complex (hemorrhagic) cysts were included. Fibroade-
nomas, cysts and invasive ductal carcinomas have dis-
tinctive behavior in their strain image under cyclic com-
pression, as detailed below.

One of the key tests was to show that strain images
are reproducible, both within an image sequence and on
repeat acquisitions. The question of reproducibility
within an image sequence is addressed for each lesion
type (fibroadenoma, cyst and invasive ductal carcinoma)
below. Figure 2 shows results of repeating the freehand
in vivo elasticity imaging on the same patient. A skilled
sonographer can acquire a sufficiently similar B-mode
image of an ROI with repeat scanning. However, obtain-
ing a similar strain image requires that the ROI be found,
and the direction of compréssion/release relative to the
lesion and chest wall be the same in the two studies. No
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Fig. 2. Two image pairs from the same patient on repeat visits.

The patient has a palpable fibroadenoma that measures about

16 mm X 11 mm. (a) The strain image acquired with the

VFX13-5 array during the first visit, which is very similar to (b)
that acquired with the 7.5L.40 array 2 weeks later.

special effort was used to obtain similar images, but Fig.
2 demonstrates that the strain patterns in these images are
very similar.

Too few independent samples of each lesion type
have been observed to make strong statistical statements
regarding each criterion described by Garra et al. (1997).
The following descriptions state our qualitative observa-
tions to date, in the hope of guiding the scanning and
image-evaluation techniques used by others in future
studies. In particular, the automatic scaling of grey-scale
values precludes quantitative statements of (and homo-
geneity of) relative stiffness. .

A total of 37 B-mode and strain image sequences
were acquired from 19 unique fibroadenomas among 9
patients. One of our most significant findings is that there
‘was an obvious (subjective, visual) loss in strain image
contrast for 14 of these 19 fibroadenomas (27 of 37
image sequences, 6 of 9 patients, average age 44 years).
Fibroadenomas typically have negative contrast (are
more stiff than their surroundings) at low precompres-
sion and lose contrast (stiffness becomes more like their
surroundings) as they are compressed. An example of
this is illustrated in Fig. 3. The largest negative contrast
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Fig. 3. Data obtained by frechand scanning of a fibroadenoma
in vivo. (a) The average strain in the ROI for each frame
suggests a slow compression rate. The interframe skip was
increased to pair every fourth frame in analyzing this sequence
of data. (b) The cumulative strain in the sequence shows that a
20% compression range was achieved. Images of fibroadeno-
mas acquired with equivalent precompression [equivalent cu-
mulative strain, frames (c) 75 and (e) 90, (d) 52 and (f) 106] are
similar, but, because of the nonlinear stress-strain relationship
of tissue, strain images acquired at different precompression
can have significantly different contrast.

occurs with minimal precompression. Figure 3c and e
shows that the transducer is barely in contact with the
skin surface at this precompression. Comparing these
with Fig. 3d and f demonstrates that images of fibroad-
enomas acquired within a sequence at equivalent pre-
compression are very similar. However, as precompres-
sion changes, strain contrast changes (comparing Fig. 3¢
or e with d or f. .

Both simple and complex cysts were included in this
study, to investigate the possibility that fluid-filled cysts,
regardless of “echogenicity,” have a common behavior in
cyclic strain images. The hope was that strain images
might help to differentiate complex cysts from solid
lesions that lack evidence of blood flow.

The frame-to-frame variability of strain images of
cysts is more complicated than that observed with fibro-
adenomas. A total of 39 B-mode and strain image se-
quences were acquired from 29 unique cysts among 15
patients. A very soft bottom layer in the interior of the
cyst was observed in 7 of 29 cysts (11 of 12 image
sequences of those cysts). That layer might be due to a
sediment inside the cystic fluid. Repositioning the patient

© @

Fig. 4. Data obtained by freehand scanning of two breast cysts
in vivo. (a) The cumulative strain in the sequence shows that a
20% compression range was achieved. Strain images of the
interior of cysts, unlike those of fibroadenomas, are not neces-
sarily similar when acquired with similar precompression (cu-
mulative strain). (b), (c) and (d) Images from frames 8, 25 and
92, respectively, were acquired with similar precompression.
Although strain images can vary smoothly from frame to frame,
decorrelation of the signals within the cysts results in strain
images that vary significantly over the compression cycle.

might have allowed us to confirm that conjecture, but
that test was not performed. The interior echoes within
the cysts rapidly decorrelate with compression. As a
result, the apparent strain in the lesions varies with
compression, but that compression-dependent strain im-
age contrast is very different from that observed for
fibroadenomas. If the incremental average strain from
one strain image to the next is small (< 0.5%), the strain
image brightness (on a pixel-by-pixel basis) changes
gradually, regardless of precompression. If the incremen-
tal average strain is not small (= 1%), then the local
brightness within the cyst varies rapidly and (seemingly)
unpredictably. The typical behavior of the strain pattern
in cysts is demonstrated (as well as can be with static
images) in Fig. 4. Unlike the behavior observed with
fibroadenomas, frames with equivalent precompression
might have very different apparent strain within the cyst.
Overall, a cyst can be either relatively stiff, as if it were
a distended balloon, or relatively soft.

A total of 21 B-mode and strain image sequences
were acquired from 7 unique carcinomas among 6 pa-
tients. All carcinomas studied so far were invasive ductal
carcinomas and all but one were highly suspicious of
carcinoma, based on mammogram and sonogram results.
This is by far the most commonly diagnosed breast
cancer. Relatively small lesions (<= 2 cm) have high
negative contrast (stiff) in a background of “normal”
breast tissue, regardless of precompression. An example
of this is shown in Fig. 5. The exception to this occurs for
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Fig. 5. Data obtained by freehand scanning of invasive ductal

carcinoma in vivo. (a) The cumulative strain in the sequence

shows that a 8% compression range was achieved. (b) Images

in frame 4 acquired at low precompression, are very similar to

(c) those in frame 18 acquired at much higher precompression.

Some differences in the strain in “normal” surrounding tissue
are seen, but vary smoothly from frame to frame.

very large lesions where little, if any, healthy tissue is
included in the strain image.

One of the criteria that Garra et al. (1997) found to
be most useful in differentiating between benign and
malignant lesions was the relative size of the lesion in
B-mode vs. strain images. To compare lesion size in the
two imaging modalities, we transferred the I-Q echo data
to an off-line computer for further analysis. The strain
images were reprocessed using the same displacement
estimation algorithm as that implemented on the Elegra.
Off-line processing used a 16-sample (< 3 mm) window
for strain estimation instead of the 24-sample window
used on the Elegra (higher axial resolution). Movie loops
of the side-by-side B-mode and strain image pairs (avi
files) were created to view the motion of the lesion in the
B-mode image and the resulting strain image. A repre-
sentative frame was selected that showed the “typical”
strain image for that lesion and the B-mode image was
displayed, allowing the lesion boundary to be traced. The
boundary in the B-mode image excluded the capsule of
the lesion. The lesion width (and height) were estimated,
based on the traced lesion perimeter, as the maximum
dimension perpendicular (and parallel) to the acoustic
beam. The tracing and measurement process was then
repeated with the strain image from that same frame. The
boundary traced in the strain image was the location of
the steepest (visual) gradient in strain. High negative-
contrast images were chosen for fibroadenomas. All trac-
ings were performed by the first author, and most bound-
aries were very easily identified. In some cases, for
example, in the atypical fibroadenoma shown in Fig. 3,
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Fig. 6. B-mode and strain images of fibroadenomas with their
perimeter traced in the B-mode image; that tracing also in the
strain image for comparison. A fibroadenoma measuring (a)
71.4 mm? in B-mode and 75.0 mm? in strain, (b) 88.7 mm? in
B-mode and 102 mm? in strain, (c) 27.2 mm? and 21.5 mm? in
B-mode and 26.8 mm? and 21.7 mm? in strain, respectively.
The B-mode tracing is a reasonably good approximation to that
on the strain image.

an experienced clinician assisted in tracing the boundary.
Example images for a fibroadenoma, cysts and an inva-
sive ductal carcinoma are shown in Figs. 6, 7 and 8.

It is intriguing to examine the relative size of these
lesions, comparing their width, height and area as mea-
sured in B-mode and strain images. Figure 9a and b
shows plots of the width and height of these three lesion
types as measured in B-mode and strain images. Figure
9c shows plots of a similar comparison of the total area

©

Fig. 7. B-mode and strain images of cysts with their perimeter
traced in the B-mode image; that tracing also in the strain
image for comparison. A cyst measuring (a) 139 mm? in
B-mode and 145 mm? in strain, (b) 102 mm? in B-mode and
84.1 mm? in strain, () 30.3 mm? in B-mode and 32.5 mm? in
strain. The B-mode tracing is a good approximation to that on
the strain image, if the soft region at the bottom of the cyst, (a)
and (b), were included.
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Fig. 8. B-mode and strain images of invasive ductal carcinomas
with their perimeter traced in the B-mode image; that tracing
also in the strain image for comparison. An invasive ductal
carcinoma measuring (a) 96.1 mm? in B-mode and 170 mm? in
strain, (b) 22.8 mm? in B-mode and 319 mm? in strain, (c) 48.7
mm? in B-mode and 170 mm? in strain, (d) 465 mm? in B-mode
and at least 768 mm? in strain. The B-mode tracing is not
representative of what would likely have been drawn on any of
these strain images.

of the lesion in the two imaging modes. Table 1 shows
that the width and height of benign lesions tend to be
about the same size in B-mode and strain images and
carcinomas are larger in strain images than in B-mode, as
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Fig. 9. Plots comparing the size of a lesion traced in the
B-mode image vs. the same lesion traced in a representative
strain image for (O) cysts, ([J) fibroadenomas and (x) invasive
ductal carcinomas. (a) The width and (b) height comparisons.
{c) The areas for lesions less than 20-mm wide (in B-mode) are
compared, and (d) the area ratio. The dashed line in (a)~(c)
represents equal size measurement in both images.

observed by Garra et al. (1997), but the separation be-
tween benign lesion and carcinoma is larger when we use
the lesion area. '

In each of these examples, the study was performed
on an isolated lesion. Although some data sets contained
more than one lesion, those lesions were separated by at
least one diameter of the largest lesion in the image.
Measurements of individual lesions in clusters of lesions,
most frequently observed in clusters of breast cysts,
proved problematic in obtaining high-quality strain im-
age sequences and in interpreting the motion. An exam-
ple of this, shown in Fig. 10, shows that it might be more
reasonable to study the cluster as a group instead of as
individual lesions. When lesions are closely spaced, par-
ticularly when they share a common boundary, the mo-
tion due to compression can be quite complex, as ob-
served in the B-mode image sequence, and the block-
matching algorithm fails to track motion adequately. The
block-matching algorithm assumes rigid body motion
and does not accurately track significant rotation or shear
motion. Further, our current system acquires data (effec-
tively) in a plane, and significant motion perpendicular to
the image plane is lost. A 3-D acquisition system would
be required to track significant elevation motion. A high-
er-order algorithm, such as the deformable mesh (Zhu et
al., 1998), would be required to track rotation and shear
motion accurately. At this stage of strain image process-
ing and interpretation, it is likely best to restrict the study
to individual isolated lesions.

DISCUSSION

Real-time display of side-by-side B-mode and strain
images is essential for guiding the manipulation of
boundary conditions for the mechanics experiment that is
strain imaging. Real-time feedback to the hand-eye co-
ordination system allows the sonographer to manipulate
the compression direction, force and rate to obtain high-
quality sequences of strain images. The system employs
standard linear-array transducers and requires no addi-
tional fixtures or remote data-acquisition or signal-pro-
cessing hardware. It is fully integrated into the Elegra
system. A small plate 9 cm X 4.5 cm is sometimes
attached to the face of the transducer to extend the
compression surface. This was most useful when scan-
ning benign lesions that tended to move in elevation
when compressed.

Our results show significantly different strain-image
sequences for each lesion type studied. Although the
three lesion types reported here do not include all those
found in breasts, they represent the most common clin-
ically observed breast lesions. It was found that, to ap-
preciate the differences among lesion types, and to de-
termine the “typical” strain image for a given lesion, it
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Table 1. Results of measurements of the size of lesions in B-mode and strain images and the
ratio of their size (strain/B-mode)

Lesion type
Cyst Fibroadenoma IDC

B-mode

Width (mm) 98 +53 11.8 £4.1 ] 11772

Height (mm) 72 +34 84+24 92+48

Area (mm?) 69.3 +72.2 81.9+444 104 = 135
Strain

Width (mm) . 98 +5.1 11.6 4.1 186 £73

Height (mm) 7.6 £38 8.8+27 148 £6.7

rea (mm?) 728 =778 812+ 446 236 *+ 206
Ratio (strain/B-mode) ‘

Width 1.02 £ 0.16 1.00 = 0.18 1.74 + 0.36

Height 1.04 = 0.16 1.07 £ 0.21 1.68 +0.36

Area 1.05 = 0.24 1.00 = 0.17 3.02+1.19

Tabulated values are the mean * the SD of the group. The size ratio for benign lesions is near unity, showing
that these lesions typically have the same size in both imaging modalities. However, invasive ductal carcinomas
(IDC) typically are 2 to 3 times as large in strain images than in B-mode images.

was necessary to observe a sequence of B-mode and
strain images displayed side-by-side. With that sequence,
a very reproducible determination of the lesion boundary
could be obtained. Measurements of lesion dimension
were then made and the results for lesion width are

®

Fig. 10. B-mode and strain images of a cluster of breast cysts
with their perimeter traced in the strain image; that tracing also
in the B-mode image for comparison.

consistent with those reported by Garra et al. (1997).
That report stated a lack of confidence in their measure-
ments of lesion height. Our results with spherical targets
in phantoms show that we can accurately measure lesion
dimension in both height and width (Zhu and Hall 2002)
and, therefore, we use lesion area as the criterion for
comparing lesion size in B-mode and strain images.
The significant, but monotonic, change in strain
contrast as a function of precompression appears to be
unique to fibroadenomas so far in our experience. This
contrast variation suggests that the stress-strain relation-
ship for fibroadenoma does not parallel that of the sur-
rounding tissue. Fibroadenomas that vary in strain con-
trast appear dark (stiffer) at low precompression and lose
contrast (become relatively softer) at higher precompres-
sion. One possible explanation is that the stress-strain
relationship for the surrounding tissue is more nonlinear
than that of the fibroadenoma over the range that each are
compressed in this technique. The average age of the
women with fibroadenomas in this study was 44 years,
and their dominant breast tissue type was subjectively
judged to be fibroglandular from B-mode images. The
data reported by Krouskop et al. (1998), demonstrate that
both glandular tissue and (primarily) fibrous tissue, such
as fibroadenoma, have nonlinear stress-strain relation-
ships. When preloaded to 5% strain, fibrous tissue is
about 3 times more stiff than glandular tissue. However,
the appropriate comparison for our application is when
both tissues have minimal preload and when glandular
tissue is preloaded about 15% and fibrous tissue is pre-
loaded some smal! fraction of that (because the less stiff
tissues strain more when they are treated as a composite),
and that composite is strained an average of about 1% for
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data acquisition. Krouskop and colleagues did not report
those results.

Garra et al. (1997) tested numerous criteria for dis-
criminating benign from malignant breast lesions. The
criterion that provided the greatest discrimination in their
study was the comparison of lesion width measured in
B-mode and strain images. They attributed that size
difference to the desmoplasia that surrounds most ma-
lignant breast tumors (Tavassoli 1999). Desmoplasia is
the excessive growth of fibrous connective tissue in the
stroma surrounding the malignancy. That growth appears
gray-white and feels very hard in gross pathology
(Tavassoli 1999). Our study tested this criterion and
extended the observation to a comparison of lesion area.
The sequence of B-mode and strain image pairs allows
the sonographer to select images representative of the
“typical” strain image for a lesion. This ability, along
with better determination of lesion boundary available by
viewing a sequence of images, has likely improved the
ability to measure true lesion size in strain imaging
compared with the results reported by Garra et al. (1997).
A study to estimate the intraobserver and interobserver
variability in choosing the “typical” strain image and
measuring lesion size is underway. That study is an
essential part of determining the value of the relative size
of lesions in B-mode and strain image pairs as a diag-
nostic criterion. The utility of elasticity imaging in dif-
ferentiating (from benign growths) malignancies that
lack desmoplasia has not been tested.

Garra et al. (1997) also found the brightness of the
lesion in strain images to be a useful parameter, but our
observation of the changing contrast with compression in
fibroadenomas provides an improved description of the
contrast of solid lesions in strain imaging. The change in
strain image contrast with applied compression (e.g., Fig.
3) demonstrates that observing only a single B-mode and
strain image pair at an unknown precompression could
be very misleading in the interpretation of the strain
image data. A sequence of side-by-side B-mode and
strain image pairs greatly adds to the ability to interpret
strain images.

Numerous other criteria were tested by Garra et al.
(1997), but demonstrated limited utility. As with their
study, the current study is litnited by the small number of
patients and lesions included, and by the fact only one
observer was involved in each report. A larger cohort of
patients and a larger number of observers are needed to

improve the statistical analysis of this technique. That
effort will be the subject of a future report.

CONCLUSIONS

A new system for real-time imaging of tissue strain
in vivo using freehand scanning is described and some of
the results obtained with this system are reported. The

mnew system provides real-time feedback, allowing the

user to manipulate the conditions of tissue compression
resulting in the ability to successfully scan all patients for
which the technique was attempted. The strain images
for various lesion types are unique, and the relative size
of the lesions appears to be a useful criterion for dis-
criminating benign from cancerous lesions. However,
further testing will be needed to support this observation.
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This manuscript reports a technical innovation that has been developed for real-time, freehand strain
imaging. This work is based on a well-known block-matching algorithm with two significant modifica-
tions. First, since displacements are estimated row-by-row, displacement estimates from the previous
row are used to predict the displacement estimates in the current row, thereby drastically reducing the
search-region size and increasing computational efficiency. Second, a displacement error detection and
correction method is developed to overcome the local tracking errors that may be more severe with free-
hand scanning and thereby improve the robustness of the algorithm. This algorithm has been imple-
mented on a clinical ultrasound imaging system, and with real-time imaging feedback, long sequences -
of high quality strain images are observed using freehand compression. Displacement estimation errors
with this method are experimentally measured and compared with results from simulation. We report
only a specific implementation, with no comparison to other displacement estimators in the literature
and no optimization of this specific technique. Images of tissue-mimicking phantoms with small spheri-
cal targets are used to test the ability to detect small lesions using the strain imaging technique. In vivo
strain images of breast and thyroid are also shown. )

Key Worbs: Elasticity; elastography; palpation; tissue characterization; ultrasound. '

1. INTRODUCTION

Ultrasonic strain imaging'’is expected to have great potential for improving soft tissue di-
agnosis. The vast majority of the strain imaging work in the literature has focused on proof
of concept and algorithm development. However, two major advances need to occur to
make ultrasonic strain imaging a clinically useful tool. First, there is a need to acquire tf (or
equivalent) echo data under clinically acceptable conditions with high patient throughput
and low rescanning rates. Second, there is a need to further develop the clinical interpreta-
tion and significance of these results. In this work, we concentrate our effort on the first is-
sue. '

A skilled sonographer can acquire B-mode images with relative ease. Low noise strain
images are more difficult to produce. Deformation of heterogeneous tissue can result in
complex motion and echo signal decorrelation between the pre- and postcompression tfecho
frame pair. Echo signal decorrelation leads to large strain estimation errors. Most strain im-
aging techniques in the literature produce strain images in two steps. First, the rfecho data is
acquired by either digitizing the output from a modified clinical ultrasound system or di-
rectly downloading the rf data from the system if it is available. Second, the stored rf echo
frames are processed off-line to produce strain images. With off-line processing, it is diffi-
cultto know, while scanning, whether the acquired echo frame pairs are coherent enough for
strain estimation. Hence, off-line data processing is not as efficient for clinical utilization as
real-time imaging,.
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2 ZHU AND HALL

A more clinically desirable system would be capable of displaying B-mode images and
strain images side-by-side in real-time. Real-time strain imaging can help clinicians deter-
mine whether satisfactory strain images are being acquired and can also help clinicians im-
prove their freehand compression techniques. With real-time feedback, clinicians can adjust
the compression speed and angle to compensate for irregular motion (large-scale rotation or
lateral or elevational translation). Hence, real-time strain imaging increases data acquisition
efficiency.

Another important aspect for clinical utilization of strain imaging is the technique used to
deform the soft tissue. Most phantom experiments in the literature used motorized compres-
sion fixtures. These devices are cambersome, limit the locations that strain imaging can be
applied, and are time consuming to incorporate.” Thus freehand scanning is desirable. Doy-
ley et al have shown that, compared with motorized compression, the penalty for freehand
scanning is small with tissue mimicking phantoms.® Hiltawsky et al have shown that strain
imaging of breast tissues with frechand compression is feasible.’

Lorenz et al have developed a real-time frechand strain imaging system that is external to
the ultrasound imaging platform.” Some encouraging results are obtained for prostate appli-
cations using the system. In their system, a modified 1-D cross-correlation algorithm is used
for displacement estimation. It performs well with small strains (much less than 1%) since
the motion is tracked only in one dimension. It is well-known in the literature that the con-
trast-to-noise ratio in strain images increases with the applied strain (below about 5%).*"
Hence, larger single step compression is desirable.

In our work, strain-imaging software is implemented within a high-end commercial ultra-
sonic imaging platform (SONOLINE Elegra, Siemens Medical Solutions, Ultrasound
Group). The strain images are displayed in real-time, side-by-side with the regular B-mode
images. For the purpose of estimating displacement with relatively large applied strain
(1~2% for in vivo tissue and up to 5% for tissue mimicking phantoms), a modified 2-D block
matching algorithm was selected. Block matching (template matching) algorithms are
widely used in image processing applications for tracking motion. The most notable appli-
cation is video compression standards such as MPEG. Its utilization in ultrasonic imaging
was first reported by Trahey et al for blood flow estimation." ’

The purpose of this paper is to report our work in developing a real-time freehand strain
imaging technique. We report only a specific implementation with no comparison to other
displacement estimators in the literature and no optimization of this specific technique.

In the next section, we will introduce our displacement and strain estimation algorithms.
In the results section, we provide performance measures of this algorithm in the form of dis-
placement estimation error and spatial resolution with tissue-mimicking phantoms. Wealso
provide examples of in vivo strain images obtained from this system. The conclusion section
summarizes this work.

METHODS

1. Standard block matching

The 2-D block .matching algorithm computes a sum-squared difference (SSD) between
pre-and postcompression rf frames for arectangular kernel over a search region as follows:

&-1)/2  (K,-1)/2 1)
SSD(u,v) = Z [nU +id + H=r( +i+u,d + j+v)]?
: i=—(K,-1)/2 j=—~(K,-1)/2
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FIG. 1 Hlustration of a kemel and search region. (a) Ilustration of a kernel. (b) The search region defining the
range of locations of kernel centers. Each x” represents an rf data sample. A kernel is composed of several adjacent
rf A-lines (5 in our implementation) with several rf samples (11 in our implementation) per line in the pre-
compression 1f field. The search region defines the range of possible locations of the center of the kerel in the
postcompression rf field.

!
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where r, and r, are pre- and postcompression rf echo fields, respectively; I and J are axial and
lateral rf sample indices for the location where the displacement is estimated; # and v define
search locations in a search region; and K, and X, are kernel height and width, respectively.

The kernel size is empirically chosen to be 11 axial samples by 5 A-lines (K,=11 and K, =5)
for a 7.5MHz transducer, or approximately half the area of the pulse-echo point-spread func-
tion. A pictorial illustration of the kernel and search region is shown in figure 1. For each lo-
cation (7.J) at which the displacement is estimated, the SSD function is computed for every rf
‘sample location that is within the search region (range of kernel centers) defined by
~U=u=U, and-V;=v=V,, where U,, U,, V, , and ¥, represent search up, down, left and right
distances, respectively, as shown in figure 1. The search-region height and width are
U=U;+U;+1 and V=V+V+1, respectively. The displacement distribution usually does not
need to be estimated as finely as rf samples. We use k£ and / as axial and lateral indices of dis-
placementestimates. The location, (v, v,..)=(d,(k.]), d,(k.l)), at which the minimum SSD is
found is considered to be the displaced position of the kernel. Hence, d,(%,7) and d,(k,]) are
axial and lateral displacement estimates, respectively.

The computational cost of the block-matching algorithm to produce one displacement es-
timate is mainly determined by the kernel and the search-region sizes. In fact, to estimate
one displacement vector, the subtraction-square-accumulation operation defined in Eq. (1)
needs to be performed K K,UV times. The computed SSD values are then compared UV
times to find the minimum. Since the kernel size is usually predefined and fixed, the task of
reducing the computational cost of the block matching algorithm is to find a way to minimize
Uand V. '

It is straightforward to estimate the computational load of the typical implementation of
SSD-based block matching. In this case, Uand ¥ are selected to be sufficiently large to guar-
antee that the displacement vector is enclosed by the search region. Assume the size of each
rfecho field is 40 mm by 40 mm (typical in our experiments) and the maximum applied strain-
is 5%. The associated axial displacement magnitude is then 0.05 x 40 mm =2 mm. The axial
sampling frequency for our study is 36 MHz, so the maximum axial displacement magnitude
is about 94 samples. Assuming uniaxial compression of an incompressible medium, the to-
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tal lateral strain is at most 5% (assuming no elevational expansion). However, it is difficult
to accurately estimate the maximum lateral displacement magnitude since we do not know

" the location of the center of the compression (location where lateral displacement is zero). If
we assume the center of the compression occurs at the middle of the data field, the maximum
lateral displacement magnitude is 0.05 x 20 mm = 1 mm. Given that the rf echo field usually
consists of 200 A-lines, the maximum lateral displacement magnitude is about 5 A-lines.
With these assumptions, the search-region size can be chosen as 94x2+1 by 5x2+1 or UV=
189 x 11=2079.

2. Search region reduction

The size of the search region can be minimized by using prior knowledge. The axial and
lateral strain are defined by the following partial differential equations

sk, = 2D @
1
; sz(k,1)=§‘iz£"_’£).‘
X2

In the sampled space, the axial and lateral strain can usually be approximated by the fol-
lowing difference equations

s,(k,1) = dl(k,l)_dl(k——l,[)’ N
x, (e, D)= x (k—1,1)
d2(k’l)_d2(k,l—1)

D=0 eh—nki-D’

where x,(k,7) and x,(k,]) are the axial and lateral coordinates of the location of the displace-
ment estimate (k,]), respectively; k-1and /-1 represent the indices of adjacent displacement
estimates relative to k and /. The following inequalities can be derived from Eq. (3)

Iy, 1)~ dy G —1, )| < S, (1) — 3y (R — 1, D) @
ld, (k, 1y —dy (k1 = 1) < 85 |x, (k, 1) — x5 (K, 1= D),

where §; and S, are the maximum (allowed) local strain magnitudes in the axial and lateral di-
rections, respectively. The spatial separations of displacement estimates are x,(k,l)-x, (k-1,])
and x,(k,))-x,(k,I-1), respectively. For real-time strain imaging, the axial separation is 16
samples and the lateral is 2 A-lines. Experiments in phantoms have demonstrated that dis-
placement can be estimated when the applied strain is greater than 5%. However, strain con-
trast-to-noise ratio decreases rapidly for applied strain in excess of 5%."° Our in vivo
experiments have shown that the displacement can be successfully estimated for applied
strain up to about 2%. Noise dominates in the displacement estimates when the applied
strain is more than 2% for in vivo tissues. We can use this as prior knowledge to limit the ex-
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FIG. 2 Illustration of an ROL Grid points (circles) are locations at which the displacement distribution is esti-
mated. Each grid point coincides with an rf sample location, but the displacement distribution is less densely sam-
pled than the rf echo signals. In our real-time implementation, grid point separations are 16 samples in the axial di-
rection and 2 A-lines in the lateral direction.

tent of the search region. Note that if the displacement difference between adjacent esti-
mates is 1 sample in the axial direction and 1 A-line in the lateral direction, then Inequalities
(4) give us

S5, <6.25%, ' 5)
8, <50%.

The maximum local strain we intend to estimate is less than 6.25%. If we estimate dis-
placement in the order of increasing & and / (row by row and from left to right), then the dis-
placement that is currently being estimated is within a 3 sample by 3 sample block centered
at the location predicted by the previously estimated displacement (one sample in each direc-
tion away from our best guess). In other words, we can reduce the search-region size to 3 by
3 if we use the previous estimates to predict where to search for adjacent estimates. Note that
we allow larger local strain than the total strain since the strain distribution is not uniform.
With the search region reduction, UV=3x3=9. Compared to typical block matching, the new
method reduces the computational load by a factor 0f 2079/9 = 231.

In implementing the reduced search-region block-matching strategy, we first manually se-
lect a region of interest (ROI) which is a subregion of the field of view. For example, in
breast imaging, we select an ROI that excludes undesired echo regions. The locations at
which the displacement is estimated are determined by grid points with equal spacing start-
ing at the upper-left comer of the ROI, as shown in figure 2. The displacement is then esti-
mated in two stages. In the first stage, the displacement of the first row of grid points, as
shown in figure 2, is estimated using Eq. (1). Since there is no prior knowledge of the dis-
placement distribution, a large search region is used. The size of the search region at this
stage is determined by the following equations.

U, =U, = CEIL(S,x,(0,0)), ©
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where CEIL is the function that rounds to the next larger integer; x,(0,0) is the depth of the top
of the ROI; A4 is the number of A-lines in the field of view. The search region created by Eq.
(6) is large enough to enclose the true displacements as long as the applied strain does not ex-
ceed S,. '

In the second stage, the displacement is estimated from the top of the ROI to the bottom,
row by row. Displacement estimates obtained in the first row are used to predict displace-
ments in lower rows, and the search region in this stage is reduced to 3 rf samples by 3 A-lines
using the equation : '

K-1)/2  (K=1)/2 Q)
D= Y. SARU+iT+)-
i=—(K=1)/2 j=~(K,~1)/2

r(+dy (k=L +i+u,J +dy(k—1,0)+ j+v)])*.

In Eq. (7), a search center, (I+d,(k-1, I), J*d,(k-1, I})), is used to guide the search. In other
words, when we do not have any knowledge of the displacement distribution, the search cen-
teris (1,J). After a row (orrows) of the displacement distribution is estimated, that informa-
tion can be used to guide the search at neighboring locations and allows the use of a small
search region. Note from Inequalities 4 that it is logical to set the search-region center to be
(I+d (k-1, 1), J+d (k, I-1)). However, since the difference between d,(k-1, /) and d,(k, I-1) is
small, the search-region center is selected as (I+d (-1, I), J+d,(k-1, I)) to simplify the algo-
rithm. ‘

The computational load can be further reduced by performing the 2-D (3 by 3 search re-
gion) search sparsely. Lateral displacement does notneed to be estimated as densely as axial
displacement because lateral sample spacing is much greater than axial. For real-time imag-
ing, we can apply 3 by 3 search regions every 5 rows and use the lateral displacement esti-
mates to guide the next 4 rows of displacement estimation. These 4 rows of displacement
estimates are obtained using a 3 by 1 search region (1-D search). An even more aggressive
strategy is to only estimate the lateral displacement for the first row and use this to predict the
lateral displacement for the remaining rows and limit the 2-D search to the first row only.

3. Displacement error detection and correction

Two types of displacement estimation errors can occur. It is common for large errors to
appear in the first row. This is due to the inherent pre- and postcompression rf waveform
decorrelation and periodic ambiguities (‘false-peak errors”) associated with large search re-
gions. Figure 3 shows an example of this type of error.

The second type of error results from correlations in displacement estimates when using
predicted displacements to reduce the search-region size. Errors in displacement estimates
propagate if they are large enough that the defined search regions do not enclose true dis-
placements. When tissue is compressed, large and irregular local deformation can occur.
This may cause local decorrelation in the recorded rf frame pair. Figure 4 shows an example
of this type of error. The displacement estimation errors tend to accumulate when estimating
displacement near those local regions.

A segmentation method that can detect and correct large errors is needed to overcome
these problems. Each row of the displacement estimates is checked for errors in three steps.
In the first step, from left to right within a row, the displacement estimates are segmented.
Segmentation occurs if the difference between adjacent displacement estimates is larger
than 2 samples. The result of this step for the displacement curve shown in figure 3 (row
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n+4) is shown in figure 5(a2) where the displacement estimates are segmented into three
groups. In the second step, groups that are not adjacent are merged if the difference of dis-
placement estimates between two nearest end points of the two groups is smaller than a
threshold (3 samples in this case). For the example displacement curve, group 3 is merged
into group 1. In the last step, the group that has the largest number of displacement estimates
(‘members’, group 1 in this example) is marked as the “correct’ group of displacement estimates
and all remaining groups are marked as errors. In the error correction stage, the displacement
values of the error groups are then discarded and replaced by linearly interpolating values
from the correct group. Figure 5(b) shows the displacement curve after error correction.
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FIG. 5 Demonstration of error detection and correction. (a) Groups that are generated after initial segmentation.
This displacement curve is the same as row n+4 in figure 4. (b) Displacement curve after error cotrection with the
segmentation method.

FIG.6 Example of B-mode and strain images displayed side-by-side on an Elegra monitor during patient scan-
ning.

Tests with in vivo data have shown that the error detection and correction process does not
need to be applied to every fow of displacement estimates. Displacement errors build up
gradually since the small search region prevents large displacement deviations between ad-
Jjacent rows. Errors are more apparent and easier to detect after the displacement estimation
process progresses several rows. With this observation, we apply the error detection and cor-
rection process once every 5 rows. For each detected error, all 5 displacement estimates are
replaced by the interpolated values.

4. Subsample accuracy displacement estimation

The displacement distribution that is estimated using this modified block matching algo-
rithm has integer sample accuracy. With 36 MHz sampling and the strain estimation method
described below, we find in phantom experiments that when the total applied strain is larger
than 2%, this accuracy is adequate for creating low noise strain images. However, when the
total applied strain is smaller than 2%, obvious strain artifacts can be seen in the image.™"
There are two ways of alleviating this problem. One way is to interpolate recorded rf frames
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FIG. 7 Photograph of a transducer with the compressor plate mounted.

to higher sampling frequencies. This will increase the computational cost tremendously
since interpolation requires computation and the kernel and search-region sizes must be in-
creased. The alternative method, used in our implementation, is to quadratically interpolate
the SSD values around the minimum to obtain sub-sample accuracy in displacement esti-
mates. With this added processing, the strain artifacts are not severe when the applied strain
is more than 0.2%.

5. Strain estimation

The axial strain is defined as the spatial derivative of the axial displacement, and there are
several methods to estimate this derivative. The simplest methods are forward, backward,
and center differences where only two data points are used. Estimating derivatives using
only two data points requires low noise in displacement estimates. Since a relatively small
kernel is used to estimate displacement, the noise in the displacement is too high to use these
methods. However, axial strain can be estimated using a low order polynomial curve fitting
method,* and we have implemented a linear regression strain estimator. In addition, this
method provides the ability to trade off spatial resolution for increased smoothness of strain
images. The strain images have better spatial resolution, but more noise, if shorter segments
of displacement estimates are used in linear regression. The strain images are visually well
balanced in smoothness and spatial resolution if the linear window length is set between 2-3
mm for a 7.5 MHz transducer.

IMPLEMENTATION

We have implemented the modified block matching algorithm on the Siemens Sonoline
Elegra. The strain imaging software is an application that resides in the Elegra. The
real-time beamformed I-Q (analytical representation of the rf signal'*) frames are passed to a
digital signal processor subsystem. That subsystem houses two Texas Instruments TMS-
320C80 MVP processors that execute the software. An I-Q frame pair is used for displace-
ment and strain estimation. The first frame is also envelope detected and a B-mode image is
formed. Then, both B-mode and strain images are displayed side-by-side on the Elegra’s

“monitor as shown in figure 6. The strain image corresponds to a region of interest (ROI)
marked by the white-outlined rectangular subregion on the B-mode image. A user interface
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FIG.8 Plots of the variance in displacement estimate errors for experimental and simulated data. (a) Motorized
compression. (b) Freehand compression. (c) Curve-fits for experimental data with simulated data. In (c), the solid
and dotted curves represent results obtained from motorized and freehand compression, respectively; circles are
data obtained from simulation.

allows the adjustment of the size and location of the ROI, the separation (in the data stream)
between I-Q frames used to estimate strain, and some of the strain visualization parameters
such as strain to gray-scale mapping, etc. This software is capable of displaying the
side-by-side images at about 7 frames/second.

With this system, strain imaging is performed in three stages. In the setup stage, the
sonographer locates the lesion and selects the ROI in which the strain is estimated and dis-
played. Then, by pushing a button, the software enters the real-time side-by-side display
mode. The user starts the compress-release cycle. If the user finds an image sequence that is
of interest, she can freeze the data acquisition. A cine-mode allows the user to browse each
frame or loop through a selected set of frames for a more careful study of the acquired data.

Tissue deformation is generated by cyclic motion of the transducer (i.e., compressing and
releasing the body surface). A small (4.5 cmx 9 cm) compressor plate can be mounted to the
face of the transducer to enlarge the compression surface and produce a more uniform stress
field. A picture of the transducer with a mounted compressor plate is shown in figure 7.
Krouskop et al'”” have shown that if the cyclic motion is approximately 1Hz, then the breast
tissue components behave as elastic materials (i.e., the viscous effects are negligible).
Hence, during data acquisition, cyclic deformation of about 1Hz is attempted.
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Experiments have shown that 7/s frame rate is sufficient for a sonographer to scan free-
hand and control the compression motion of the transducer to compensate for undesirable
lateral and elevational motion. No additional motion restricting device is necessary. How-
ever, successfully acquiring strain image data is not trivial. The sonographer needs to under-
stand that the information being extracted is mechanical in nature and that the major
challenge in strain image scanning is to minimize the rf waveform decorrelation.

Note that most of the parameters involved in the processing that generates strain estimates
have not been optimized. These parameters include the kernel size used in the block-
matching algorithm and the window length used in the moving linear regression algorithm
that estimates strain from the displacement distribution. The optimization will be performed
in our future work. '

RESULTS

All data sets shown in this section were acquired using the system described above. A
7.5LA0 linear array transducer (pulsed at 7.2MHz) was used in our data acquisition. The
field of view was 40 mm x 40 mm. The system performance is studied in terms of basic im-
age quality parameters. Reported here are representative measurements of noise and resolu-
tion. More detailed investigations into these topics will follow in future work after the
processing parameters are optimized. :

1. Displacement estimation error

The variance of the error in the displacement estimates was measured using a uniform gel-
atin phantom to produce a predictable displacement distribution. Both motorized compres-
sion and freehand compression were used in order to compare the variance of displacement
errors with each of these methods. The motorized compression (a laboratory system'®) used
a large compression plate that covered the entire upper surface of the free-standing gelatin
block (10 cm x 10 cm x 7 cm (WxDxH), no additional fixtures). The motor was programmed
to produce a sinusoidal compression of 20% at 0.4 Hz. Freehand scanning was performed
with the compressor plate shown in figure 7 and the compression was intended to replicate
that of motorized compression. The separation between 1-Q frame pairs, called the skip
number and used for strain image formation, was adjusted to achieve a wide range of
frame-average strains from these data sets.

The acquired data sets were processed off-line using an algorithm identical to that pro-
grammed on the Elegra. Since the phantom had uniform stiffness, the displacement curve
along the compression direction should be a straight line (strain is constant over the entire
field of view). Linear regression was applied to the estimated displacement curve along each
A-line in the region of interest to generate the best-fit displacement curve. This line was then
considered to be the true displacement. The displacement error was calculated as the differ-
ence between estimates and the fitted lines. The corresponding strain was calculated by av-
eraging over strain estimates for all A-lines in the ROL.

We also simulated rf frame pairs for the medium with uniform stiffness.’ The scanning
pulse, sampled at 36 MHz, had 7.2 MHz center frequency, a -6 dB bandwidth 0f40% and a
Gaussian lateral profile with -6 dB beam-width of 400 um and beam spacing of 200 pm.
These parameters closely simulated the beam profile produced by the Elegra 7.5L40 probe.
The simulated compressions resulted in applied strains 0£0.2,0.5, 1,2, 3,4 and 5%. For each
compression, 30 rf frame pairs were generated and the modified block-matching algorithm
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(a) (b)

FIG.9 Strainimage (a) of a phantom with spherical targets. The average strain is 2.5%. The size measurements,
shown in (b), are-accurate, as detailed in table 1.

was used for displacement estimation. The displacement estimates were compared with the
known true displacements to calculate the variance of the displacement estimation error.

Figure 8 shows the variance of the displacement estimation error versus the estimated ap-
plied strain. In figure 8(a) and (b) (motorized and frechand compression, respectively) the
first 50 frames in the collected rf data sequences were used as precompression data fields.
The skip number was varied from I to 15 for motorized compression and from 1 to 25 for
freechand compression to achieve strains ranging from 0.1% to 5%. There were a total of 725
strain and variance measurements for motorized compression and 1250 measurements for
frechand compression. In figure 8(a), there are 6 measurements with high displacement esti-
mation error at relatively high strain. These are the cases where the error detection and cor-
rection method failed due to excessive noise in the first row displacement estimates.

Displacement error variance estimates for motorized and freehand compression were fit to
a second degree polynomial in log-log space to generate representative curves for each data
set and those curves were plotted in figure 8(c). Note that the 6 measurements for motorized
compression with high error variance were excluded when curve fitting. The circles in fig-
ure 8(c) are displacement error variance measurements obtained from the simulation. The
standard deviations of the error variance measurements for simulation are so small that they
are not plotted (they would not be visible if plotted).

Asseen in figure 8(c), the displacement error variance curve is relatively flat for strain less
than 1%. This is likely due to the fixed displacement error produced by the quadratic interpo-
lation.” The displacement estimate error variance for experimental data increases with the
applied strain faster than the results obtained from simulation. This is likely due to
elevational motion resulting from compressing the free-standing gel block (plane stress con-
ditions), whereas the simulated data employed plane strain conditions (no elevational mo-
tion). Comparable performance is observed with motorized and freehand compression.
Although motorized compression generally has slightly lower displacement errors, the ben-
efit associated with frechand scanning offsets the small improvement in displacement esti-
mate errors.

2. Small lesion detection

Gelatin phantoms with spherical targets that were three times stiffer than the background”
were used to test the strain imaging system performance with small targets. The strain image
(acquired with 2.5% compression) shown in figure 9(a) contains three targets (4.0 mm, 3.2
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TABLE 1 Measured target size in miilimeters.

Leftmost target Middie target Rightmost target
Height (axial) 4.1 3.1 23
‘Width (lateral) 4.0 34 23
Actual diameter 4.0 3.2 24

FIG. 10 Strain image of a 3 mm x 3 mm in vivo cyst in breast.

. mm and 2.4 mm diameter, respectively). The apparent size of these targets was measured in
the strain image in both axial and lateral directions. Figure 9(b) shows line segments that
correspond to the width and height for each target and table 1 shows the measured sizes.
These results suggest that spherical targets as small as 2.4 mm diameter can be accurately
measured in both the lateral and axial dimensions.

3. In vivo strain images

Real-time freehand strain imaging has also been performed on in vivo tissues. The images,
shown below, demonstrate that these strain images have reasonably low noise and high con-
trast. :

Figure 10 shows an in vivo breast cyst that is about 3 mm x 3 mm. The visibility of the cyst
in the strain image confirms our phantom results that lesions of a few millimeters in diameter
can be detected in the strain images. The exact reason that the fluid filled cyst appears stiffer
than the background is unknown. A reasonable hypothesis is that the cyst fluid is bounded by
a distended capsule and appears stiff much like an air-filled balloon feels stiff,
~ Figure 11 shows an in vivo breast carcinoma. The apparent size of the tumor is much larger
in the strain image (about twice as big) than in the B-mode image. This is consistent with the
findings of Garra et al.* : '

Figure 12 shows an in vivo thyroid strain image. There is a nodule inside the thyroid, seen
in both B-mode and strain images. The tissue structures and therefore the boundary condi-
tions around the thyroid are very different from the breast, and in both cases compression in-
duced motion is complex. However, with real-time feedback, the sonographer can manipulate
the compression technique and obtain strain images. A problem in strain imaging of the thy-
roid is that the trachea and major blood vessels are often included in the field of view. Since
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FIG. 11 Strain image of an in vivo breast carcinoma.

-arolid Nodule  Trachea  corohg  Nodule Trachea

FIG. 12 Strain image of an in vivo thyroid with a nodule. Flow in the carotid and echo noise in the trachea cause
errors in motion tracking and strain estimation. i

there are no echo signals from the trachea, displacement estimates in this region are at best
misleading. The blood flow in the carotid is perpendicular to the image plane and introduces
elevational motion that causes echo signal decorrelation and motion tracking errors. The ob-
server must consider these factors for correct strain image interpretation in this case.

CONCLUSION

A computationally efficient displacement estimation algorithm has been developed for
real-time, frechand ultrasonic strain imaging. The proposed method is based on a block-
matching algorithm that is widely used for motion detection in digital image processing. Ma-
jor modifications increase the computational efficiency and robustness of the typical block
matching algorithm. The algorithm is implemented on the Siemens SONOLINE Elegra as
an add-on software application.

With real-time feedback of strain images, sonographers can adjust their compression/
scanning technique to consistently form strain images. Strain images with acceptable qual-
ity are observed in both breast and thyroid scanning, which require different scanning tech-
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niques and where the motion is much more complex than in phantoms. Since the algorithm is
implemented on a commercially available clinical imaging system, data can be efficiently
acquired from a large number of patients, enabling clinical evaluation of strain imaging in
- soft tissue diagnosis.
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A Finite-Element Approach for Young’s Modulus
Reconstruction

Yanning Zhu*, Timothy J. Hall, and Jingfeng Jiang

Abstract—Modulus imaging has great potential in soft-tissue
characterization since it reveals intrinsic mechanical properties.
A novel Young’s modulus reconstruction algorithm that is based
on finite-element analysis is reported here. This new method over-
comes some limitations in other Young’s modulus reconstruction
methods. Specifically, it relaxes the force boundary condition re-
quirements so that only the force distribution at the compression
surface is necessary, thus making the new method mere practical.
The validity of the new method is demonstrated and the perfor-
mance of the algorithm with noise in the input data is tested using
numerical simulations. Details of how to apply this method under
clinical conditions is also discussed.

Index Terms—Tissue characterization, tissue elasticity.

1. INTRODUCTION

HE ELASTIC properties of biological tissues are usually

modified by disease. Surgeons often describe the « feel”
of excised abnormal tissues. As a result, a quantitative mea-
sure of the elastic properties of tissue should be useful in di-
agnosing abnormalities. The physical quantities that describe
tissue elastic properties are stress, strain, and elastic moduli, and
methods have been developed to estimate each of these. Palpa-
tion, which has been used for more than 4000 years, utilizes
tissue surface stress information to detect tissue abnormalities.
Palpation remains an effective diagnostic tool. In fact, the ma-
jority of breast tumors are discovered with palpation [1]. How-
ever, palpation is qualitative and lacks sensitivity to small deep
abnormalities. Quantitative methods similar to palpation have
been developed to visualize surface pressure [2], [3]. Other re-
cent developments in bioelasticity imaging techniques involve
accurately and noninvasively measuring the tissue strain distri-
bution during external compression. Studies have shown that
these techniques show promise in diagnosing and monitoring
diseases of the breast [4]-{7], kidney [8]-{11], and blood vessels
[12], 113].

Mapping stress or strain distributions provides only relative
information about tissue elasticity. Using either stress or strain
information alone, one can only identify a region of tissue that is
stiff (or soft) relative to its surroundings. Elastic moduli provide
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an absolute measure of tissue elasticity that is intrinsic to the ma-
terial. The stress or strain distributions alone lacks a one-to-one
relationship with the elastic moduli distribution. Images of the
stress or strain distribution may also include misleading arti-
facts that could lead to uncertainties in diagnosing tissue abnor-
malities. Therefore, it is desirable to measure elastic moduli in
bioelasticity imaging techniques. However, measuring the dis-
tribution of elastic moduli is more difficult than either the stress
or strain distribution. :

The theory of mechanics shows that to describe the com-
plete elastic properties of a material requires a tensor that has
81 components {14]. Clearly, it is impractical to measure all
these components. Assumptions can be made to simplify the
problem and reduce the number of unique tensor elements. If
a material is assumed to be continuous, incompressible, and
isotropic, then its elasticity can be completely described by one
elastic modulus, either Young’s modulus F or shear modulus .
Strictly speaking, none of the above assumptions are valid for
biological tissues, but most biological tissues closely approx-
imate continuous and incompressible materials. Some tissues,
such as muscle, are anisotropic in their structure, function, and
mechanical properties. For this paper, however, we will assume
tissue to be continuous, incompressible, and isotropic as a first
approximation.

Currently, ultrasonic-based techniques for measuring the
elastic modulus of tissue fall into two categories. First, dynamic
compression techniques [15}-{18], such as sonoelasticity, use
a vibrator to propagate low-frequency “ pumping” waves into
tissue. In the most promising of these approaches, shear wave
velocity or wavelength are estimated, and from these the shear
modulus can be estimated. However, problems associated with
this technique are high image noise, low spatial resolution, and
difficulty in propagating the shear wave energy across tissue
boundaries. v

The other category is referred to as (quasi)static compres-
sion techniques. In static compression techniques, the tissue
Young’s modulus distribution is estimated from the tissue de-
formation and boundary pressure measurements. The methods
to estimate tissue deformation have been extensively discussed
in ultrasound based elastography [19]-[28]. The tissue is
deformed either by an external force or an internal force. The
RF echo waveforms before and after an incremental deforma-
tion are recorded, and the tissue displacement distribution is
estimated by comparing these RF waveforms. Tissue internal
displacement can be also obtained using magnetic resonance
imaging [29]{31] and optical elastography [32] techniques.
Young’s modulus estimation can be performed utilizing the
tissue deformation information obtained with the strain imaging

0278-0062/03$17.00 © 2003 IEEE
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techniques. In addition to the displacement distribution, some
Young’s modulus estimation methods also require knowledge
of the pressure or force boundary conditions.

There are four methods in the literature for reconstructing the
‘Young’s modulus distribution based on static compression tech-
niques for displacement estimation. The first method estimates
Young’s modulus by numerically solving a second-order partial
differential equation that describes a linear, isotropic, incom-
pressible medium under static deformation [33]. That method
requires significant spatial smoothing of the displacement esti-
mates to obtain second-order partial differentials that are also
smooth. Hence, with noisy displacement estimates, that method
inherently has low spatial resolution. Another problem asso-
ciated with that method is that for a two-dimensional (2-D)
analysis, the force boundary condition of the medium must be
known on all sides. However, in practice, the force distribution
can only be (easily) measured on one side (the compression sur-
face) of the medium.

The second method uses an iterative technique to reconstruct
the modulus distribution [34], [35]. That method uses finite-
element analysis (FEA) to solve the forward elasticity problem.
The input to the FEA algorithm is the measured displacement
field, the assumed boundary conditions, and an initial guess of
the modulus distribution. The output of the FEA algorithm is
an estimate of the displacement distribution. The difference be-
tween the measured displacement distribution and the FEA pre-
diction is used to adjust the modulus distribution from its initial
guess. By repeating the process multiple times, one can obtain
a modulus distribution that minimizes the displacement distri-
bution difference in a least squares sense. The advantage of that
approach is that it does not require knowledge of the pressure
boundary conditions. However, without knowing the boundary
pressure, only relative modulus estimates can be obtained. In
other words, the ratio of the modulus between different loca-
tions can be determined. Although that method can reduce the
artifacts in strain images, it does not provide absolute measure-
ment of the tissue modulus distribution which can be useful in
tumor discrimination as suggested in [36], and an incorrect ini-
tial modulus guess may result in convergence to an incorrect
modulus distribution. For media, such as tissue, that have a com-
plicated modulus distribution, a good initial guess for the mod-
ulus distribution is difficult to obtain.

In the third modulus reconstruction method, a finite-differ-
ence approach is used to describe the elasticity problem in a
medium [37]. That approach rearranges linear equations that
describe the forward problem so that the modulus distribution
becomes unknown variables in these equations. The modulus
distribution can then be solved. However, that method also re-
quires knowledge of the boundary conditions on all sides of the
object.

The fourth approach uses a variational method to formulate
the forward solution [38]. Then the terms with unknowns are
rearranged to derive a matrix equation similar to ours. However,
the boundary force condition was not utilized in their treatment.
Hence, this method can only reconstruct the ratio between the
Lame constants and tissue mass density.

In our approach, FEA is used to construct a set of linear equa-
tions that describes the elastic behavior of a 2-D object. Similar

to the third method mentioned above, we rewrite the linear equa-
tion set so that the Young’s modulus distribution are explicit
variables which can be solved. The solution does not require
an initial guess or iteration of the modulus distribution solution,
and it provides absolute, not relative, modulus estimates. Unlike
the equation set for solving forward elasticity problems, where
the number of equations equals the number of unknown vari-
ables, the equation set for our inverse solution usually involves
more equations than unknowns. This allows us to simplify the
force boundary conditions so that only one (surface) force dis-
tribution is necessary to solve for the modulus distribution.

The details of our modulus estimation method are described
in Section II. The validity of this method is tested with simu-
lationis and results are shown in Section III. The discussion of
how this technique can be implemented for ultrasonic imaging
systems is provided in Section I'V.

II. METHOD

Three integral parts of the proposed modulus estimation
method are described in this section, one subsection each.
Section II-A provides the information necessary for solving
a forward elasticity problem of 2-D continua using FEA.
Although the content of this subsection is well known in
the literature, it is briefly reviewed here to provide sufficient
background, terminology, and notation for the development
of Section II-B. In Section II-B, the FEA-based modulus
estimation technique (inverse problem) is described in detail.
Section II-C addresses issues of how to apply the proposed
method under practical constraints.

A. The FEA Method for Solving a Forward Problem of 2-D
Continua

The FEA procedure for solving a forward elasticity problem
of 2-D continua can be summarized as follows [39}-{41].

1) Select an element type and derive the element stiffness
matrix.

2) Form a mesh using the selected element to cover the re-
gion of interest (ROI) for which the elasticity problem is
solved.

3) Generate the global stiffness matrix by assembling ele-
ment stiffness matrices.

4) Apply the boundary conditions to solve the global matrix
equations for the solution.

The details of these steps are provided below.

Step 1: For 2-D problems, the common choices for element
type are triangles or quadrilaterals. In other words, each element
has either three or four nodes. The element matrix equations for
elasticity problems have the form

K©§) = gle) )

where K(¢), §(¢) and £(©) are, respectively, the element stiffness
matrix, the element nodal displacement vector, and the element
nodal force vector for element e. In this paper, rectangular
elements, as shown in Fig. 1, are used. Details of how to compute
the element stiffness matrix is provided in Appendix L

Step 2: For problems that can be described by partial differ-
ential equations but do not have closed form solutions, FEA has
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Fig. 1. The rectangular mesh element. Nodal numbers start from the bottom
left corner and increase on the clockwise direction. .

been developed to find approximate numerical solutions on dis-
cretized problem domains. These solutions can then be interpo-
lated to form continuous solution spaces using shape functions.
The discretization process is performed by creating a mesh that
covers the ROI in the object.

A mesh is composed of elements that cover a contiguous area
in the problem domain. In this paper, all elements in the ROI are
rectangles of the same size. A nine-element mesh is illustrated
in Fig. 2. The numbers in the center of the rectangular elements

" are element numbers and numbers close to nodes (intersection

points) are nodal numbers.

The mesh configuration can be represented by a connectivity
matrix, C. The number of rows of C' equals the number of el-
ements, N,. For four-node elements (rectangles), C' has four
columns. The ith row of C records nodes associated with the
ith element. For the mesh shown in Fig. 2, the first two rows of

C are
1 2 6 5 '
(2 37 6) ’ @
Step 3: The matrix equation for a meshed system (for ex-
ample, the system described in Fig. 2) has the form
Ké=f, 3)

where K is the global stiffness matrix; § is the global nodal
displacement vector; and f is the global nodal force vector. The
global displacement vector has the form

6=(612 81y b3x b5y ...)T @

where 81, and 81, are the displacements in the z and y directions

" fornode 1, and so on. The global nodal force vector has the form

F=(fir fiy fu Foy )T 5

where f,, and f, are the net force exerted onnode 1 inz and y
directions, and so on. The global stiffness matrix K is assembled
from element stiffness matrices. The assembly process can be
found in Appendix II.

Step 4: Displacement boundary conditions are usually speci-
fied for the elasticity problems in our applications, and a penalty
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Fig. 2. A nine-element mesh composed of rectangular elements with uniform
size. Numbers in the center of the rectangular elements are the element numbers
and numbers close to nodes (intersection points) are the global nodal numbers.

approach [41] can be used to solve (3). The details of the penalty
approach is provided in Appendix III

B. The FEA Approach for Solving an Inverse Problem of 2-D
Continua

-Soft tissues can generally be considered as incompressible
media [33]. Hence, the Possion’s ratio can be assumed to be a
constant that is close to 0.5 (0.49, for instance) throughout the
ROI. With this assumption, matrix K in (24) is same for every
element if all elements have the same aspect ratio (which is true
in this paper since the mesh is composed of the elements with
same size).

In the element-to-global stiffness matrix assembly procedure
described in Section II-A, each component of K (e) (i.e., the
product of the element Young’s modulus and a constant) is ac-
cumulated onto the global stiffness matrix. Hence, each compo-
nent of the global stiffness matrix is a linear combination of the
Young’s modulus of each element. In other words, the global
stiffness matrix can be written as

K=[K;] i=1,...,N,j=1,...,N, ©)
Ne ~
K=Y cJE® Y]
e=1

where ¢/ are constants.

From (3), the left-hand side of the system matrix equation is
K. In Young’s modulus reconstruction, the displacement dis-
tribution is estimated with tissue motion tracking techniques.
In other words, 6 is a “known” vector. Performing the matrix-
vector multiplication -

il Ky
N
Kb = Zj:l 6;Kij | - ®

Ef;l 6;Kn;
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Since K;; is a linear combination of E(©) [see (7)], each compo-
nent of the resulting vector on the right-hand side of (8) is also
a linear combination of E(©). Or
E;v;l Dy;E 2
Ké=| ¥0 Dy;ED ©)
E;": . Dn;E®
The right-hand side of (9) can be written as a product of a
matrix and a vector. Or

Ké=DE (10)
where D is a N -b}}-N e matrix;
E = (E® EG) EWM))" is the Young’s
modulus vector. Now, (3) can be rewritten as

DE = f. an

Recall from the global stiffness matrix assembly procedure,
provided in Section II-B, that the component K ) = E@K,;
of the local stiffness matrix of element ¢ is accumulated to the
Ci(e)th row and CJ(-e)th column of the global stiffness matrix, or

K () 5t . When performing the multiplication of K'é [see (8)],

i

E©) I?ij is multiplied with § (). The product is then accumu-

lated to the Ci(e) th component of the resulting vector. Hence,
K 105t is a summand of the C’i(e)th row and eth column com-
ponentJ of the matrix D. Based on this observation, the matrix
D can be assembled from the element stiffness matrix using the
following procedure.
1) Initialize a N-by-N, null matrix.
2) For element e, generate a local variable number to global
variable number conversion index vector 1) defined in
(26). _
3) Accumulate K;;0, ) to Dy, fori =1,...,8and j =
1,...,8. ’ '

4) Tterate 2 and 3 for all elements.

Similar to solving forward elasticity problems with (3), the
Young’s modulus reconstruction problem can be solved from
(11) were D is an N-by-N, matrix. Usually, N > N, and (11)
defines an overdetermined set of equations. The common tech-
nique for solving an overdetermined linear equation set is to
convert it to a least-square problem [42]. The conversion can
be done by multiplying both sides of (11) by DT

(DTD)E = DT§. 12)
Since (DT D) is an N,-by-N, matrix, E can be solved by the
following equation
E=(DTD)'DTf. 13
The application of this method under practical constraints is
provided in the next subsection.

C. Practical Concerns

1) Necessary Measurements: Equation (3) implies that
there is an unstressed state to which the object returns when all
external forces are removed from the object. Then, the external

forces (e.g., gravitational force, atmospherical pressure, and
compressional force) are exerted on the object. The displace-
ment is measured between the unstressed state and the state
with external load. In reality, however, the geometrical distri-
bution of the object in the unstressed state is unknown. Hence,
(11) [which is derived from (3)] cannot be used directly to
solve the inverse problem. Fortunately, if the object is assumed
to be a linear elastic body for small incremental deformations,
then this problem can be solved.

Assume there are two loading states of the object S; and S,.
In 53, the object can be described by

K& = §(50) 14)

where 8§51 is the object displacement between the natural state
and S7; f(51) is the compressional load measured in S;. In So,
the object can be described by

K§(52) = f(52), 15)
Note that K is state independent given the linear elastic body
assumption.
Subtracting (15) from (14), we find
KAS=Af (16)

where A§ = §(51) — §(52) and A f = f(S1) — £(52) Replacing
(3) with (16), the derivation introduced in Section II-B still
holds. (16) states that thre¢ measurements, namely, A8, f(51),
and f(52), are necessary for Young’s modulus reconstruction.

2) Young’s Modulus Reconstruction With Partial Boundary
Conditions: Recall that (11) defines an over-determined set
of linear equations. This means that only a subset of (11) are
needed for inverse solution. Let D, be a matrix that is formed
from a subset of rows from D, and f, be the force vector
formed from the corresponding subset of f. As long as (DT D,)
is invertible, a unique inverse solution can be obtained from

E = (D{D,)"' D fs. an

This property can be used to relax the force boundary conditions
for the inverse problem.

Under typical conditions a subregion of the tissue under study
is observed. A mesh can be created to cover an ROI which
is a subset of the field of view. Only one side (the surface of
the tissue) of the boundary force distribution can be measured
with ease with a force sensor array. With the example shown in
Fig. 2, let us assume that the compressional force can be mea-
sured along the top side (nodes {13, 14, 15, 16}). D, and f,
are determined by the following rule: select all equations from
(11) involving all interior nodes of the mesh and all nodes ex-
cept the outer most two for which the force measurements are
made. With the example shown in Fig. 2, the selected nodes are
{6,7,10, 11, 14, 15}. The related subset of the matrix equations
include rows {11, 12, 13, 14, 19, 20, 21, 22, 27, 28, 29, 30} of
an.

It is difficult to mathematically prove that the equation se-
lection rule described above always provides invertible DT D,,
however, it is easy to test whether DT D, is invertible givena
mesh configuration. From the variety of mesh configurations
that have been tested, the equation selection rule described
above always provides invertible DT D
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3) The Size of D Matrix: The size of the matrix D can be
a problem if it is assembled as a dense matrix. For example,
if the mesh has 100 x 100 elements, then there are total of
101 x 101 = 10201 nodes. The size of D is 20 402-by-10 000,
or 204020000 components. Representing each component
as double precision floating point numbers and storing this
dense matrix requires about 1.52 GB of computer memory.
With current computer technology, storing such a large matrix
may not be a problem. However, calculating (DTD)™? is
impractical.

Fortunately, D is a sparse matrix. Recall that each row of (3)
describes the behavior of a node, and there are a maximum of
four elements related to one node. Thus, the maximum nonzero
components of a row in D is four.

The number of nonzero components of D for a 100-by-100
element mesh is in fact 80 000. Using the sparse matrix features
provided by MATLAB, this can be stored with about 1MB of
memory. Compared with dense matrix storage, this is a 1600:1
reduction in memory requirement. Using a 750-MHz Pentium
I PC, (DT D)~ can be computed in about 20 s. Note that
although the discussion is based on D, same conclusion can be
drawn for D,.

III. RESULTS

A. Solving the Forward Problem With Ideal Input
First, we simulated an object for which the forward problem

" was solved. The dimension of the simulated object was

40 x 40 x 2 (width x height x thickness in millimeters).
Young’s modulus distribution of the object is shown in Fig. 3.
The Young’s modulus of the background was 15 kPa which
approximates the stiffness of normal glandular breast tissue
[36]. There were two 10-mm-diameter targets in the object that
simulate lesions. The upper target was three times stiffer (45
kPa) than the background and the lower target was three times
less stiff (5 kPa) than the background.

A mesh was created for this object with 160 elements in both
horizontal and vertical directions. The total number of elements
was 160 x 160 = 25 600. The size of e€ach element was 0.25 mm
% 0.25 mm. To produce a realistic estimate of boundary force
values, we assumed plain stress conditions for the compression.
The Possion’s ratio v of 0.49 was used (incompressible media).
The displacement boundary conditions were assigned such that
the displacement of bottom side of the object was zero and the
top side of the the object was 0.8 mm simulating a 2% compres-
sion of the object.

Using the forward FEA method introduced in Section II-A,
we calculated the displacement distribution and the force distri-
bution along top and the bottom sides of the object. Using the
displacement distribution, strain in both the horizontal direction
(sz=) and vertical direction (s, ) were calculated and shown in
Fig. 4(a) and (b), respectively. With the plain stress assumption,
the following relationship holds s;. /sy, = —v/2. The force
distribution on the top and bottom sides of the object are shown
in Fig. 5(a) and (b), respectively. Note that the forces on the top
side are all negative since the direction of the applied force is
pointing vertically down. As shown in Fig. 5, the magnitude of
force on the outer most nodes are half of the magnitude of the

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 7, JULY 2003

Fig. 3. The Young’s modulus distribution for the simulated object. The units -
of the color bar are kPa.

®)

Fig.4. Strain images obtained from the forward FEA calculation for the object
illustrated in Fig. 3. (a) Horizontal strain s.... (b) Vertical strain s,,.

force on their adjacent nodes since the area of support for the
outer most nodes is half that of the inner nodes. With the same
surface pressure, the exerted force is half the magnitude.
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Fig. 5. The Bounda:y force distribution obtained from the forward FEA
calculation for the object illustrated in Fig. 3. (a) Force on the top side.
(b) Force on the bottom side.

B. Solving the Inverse Problem With Ideal Input

To test the modulus reconstruction technique we used the re-
sults of the forward problem calculations, but, in effect, dis-
carded nonessential information. The only input to the inverse
(modulus distribution) computation were the ideal displacement
distribution over a (sub-)ROI and the force distribution at the
top (compression) surface generated by the forward solution.
The sub-ROI was 30 mm X 30 mm and a new mesh was created
to cover that area. An illustration of the meshed areas for the
forward simulation and the inverse reconstruction is shown in
Fig. 6.

Fig. 7 shows the result of the Young’s modulus estimation.
The standard deviation of the relative error in the reconstructed
Young’s modulus distribution is 2.0 x 10~5%—a nearly exact
reconstruction is obtained. This result is encouraging since it
shows that the Young’s modulus estimation method introduced
above is a valid approach and confirms that the “partial force”

Meshed area for forward simulation

Fig. 6. An illustration of the meshed areas for the forward simulation and the
Young’s modulus reconstruction.

Fig. 7. The reconstructed Young’s modulus image using the ideal (noise-free)
displacement and force boundary conditions.

boundary condition is sufficient to estimate the modulus
distribution. ‘

In the above modulus estimation simulation, the size of the
elements was the same as that used in the forward simulation.
The small elements provide high spatial resolution. However, it
is not likely that such high spatial resolution can be achieved
under all practical conditions. In the next simulation, we in-
creased the size of the elements to 1 mm X 1 mm. In other
words, we blurred the spatial sampling by a factor of 4. Fig. 8(a)
shows the “true” modulus image of the same object. The “true”
modulus value of each element were calculated by averaging the
16 modulus values in the corresponding area of the finer meshed
object. The inverse problem was solved using the exact displace-
ment and force from the forward simulation results produced by
the finer mesh. The result of the modulus estimation is shown
in Fig. 8(b). The relative difference between Fig. 8(a) and (b)
is shown in Fig. 8(c). The mean and standard deviation of the
image shown in Fig. 8(c) are —1.25% and 17.8%, respectively.
The small mean value suggests that the modulus estimates are
unbiased. However, the standard deviation value shows that the
reconstructed modulus image using larger element size can be
noisy. Since the modulus estimates are unbiased, a simple spa-
tial averaging can improve the visual effect of the reconstructed
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modulus images at the expense of further reducing the spatial
resolution.

C. Modulus Estimation With Noisy Displacement and
Boundary Force Estimates

Inevitably, there is noise in the displacement and boundary
force estimates that are used in modulus estimation. Hence,
it is necessary to study the effect of noise in the input data
on the resulting modulus estimates. To avoid the difficulty
of analytically deriving the noise relationship between input
data and final outcome, we rely on numerical simulation.
The forward solution shown in Figs. 4 and 5 was used as
the ideal displacement and boundary force distributions. The

- inverse simulation was based on the mesh configuration that

produced the result shown in Fig. 8. Noise, modeled as zero
mean white Gaussian random processes [43],! was added to

IBilgen et al have shown through simulation that the noise in displacement
estimates is Gaussian distributed. However, the spectrum of the noise is
not shown in their work. The spectrum of noise is assumed to be white
as an approximation.

©

Fig. 8. Simulation results using the larger element size. (a) The ideal decimated modulus image. (b) The reconstructed modulus image using the larger element
size. (c) The relative difference between (a) and (b) measured in percentage, mean = —1.25%, std = 17.8%.

both the ideal displacement and boundary force distributions. A
range of the standard deviations (noise) were used to study the
relationship between noise power and the modulus estimation
error. For each predetermined level of noise, 100 realizations
of (noisy) displacement and force distributions were generated
and the object modulus distributions were reconstructed.

The modulus estimation error is defined as the difference be-
tween the “true” modulus distribution {Fig. 8(a)] and the esti-
mated modulus distribution with noise present in the input data
(force boundary condition and displacement distribution). The
relative mean and the relative standard deviation of the error
were calculated from the outcome of all 100 realizations of noise
fields. The simulation results are shown in Fig. 9. The standard
deviation of the noise added to the boundary force distribution
is 5% of the mean ideal force in Fig. 9(a) and (b) and 10% in
Fig. 9(c) and (d). Fig. 9(a) and (c) shows the relationship be-
tween the standard deviation of the displacement error and the
mean relative modulus estimation error. Fig. 9(b) and (d) shows
the relationship between the standard deviation of the displace-
ment error and the standard deviation of the relative modulus
estimation error.
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Fig.9. Modulus estimation performance curves. (a) Standard deviation of the error in displacement versus the mean relative error in modulus estimates resulting
from a 5% standard deviation in the “measured” force. (b) Standard deviation of the error in displacement versus standard deviation of the relative error in modulus
estimates resulting from a 5% standard deviation in the “measured” force. (c) Standard deviation of the error in displacement versus the mean relative error in
modulus estimates resulting from a 10% standard deviation in the “measured” force. (d) Standard deviation of the error in displacement versus standard deviation
of the relative error in modulus estimates resulting from a 10% standard deviation in the “measured” force.

Comparing Fig. 9(a) with Fig. 9(c) and (d), we found that the
modulus estimation error is not very sensitive to the errors in
the boundary force measurements. However, it is very sensitive
to errors in the displacement measurements. When the standard
deviation of the displacement error exceeds 10™¢ mm, the
modulus estimation becomes biased, as shown in Fig. 9(a)
and (b), and the noise in modulus estimation starts to increase
rapidly. Note that the units in the horizontal axis of all plots
in Fig. 9 are mm. To make the results independent of the
actual object dimension, we re-plotted results in Fig. 10. In
Fig. 10 the horizontal axis is changed to standard deviation of
relative strain error. From the plots shown in Fig. 10, we can
see that when the noise in the displacement estimates causes
more than 1% strain error, the quality of modulus estimates
starts to degrade rapidly.

IV. DISCUSSION

The derivation in Section II-C2, shows that the boundary
conditions for the inverse problem with the proposed method
are less restrictive than those of the forward problem. In
the forward simulation, boundary conditions that describe all
sides of the meshed object are required to solve (3) for the
displacement distribution and the boundary force distribution.
In modulus reconstruction, however, only the sub-ROI of the
object needs to be meshed, and only partial boundary force
conditions need to be specified. This makes our approach more
practical and far easier to implement (experimentally) than
other methods. ) ’

In our method, the medium is assumed to be elastic. Possible
tissue viscous behavior is not accounted for in our model. With
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carefully designed methods for data acquisition, the viscous re-
sponse to the external compression can be negligible [36].

In Section II-C1 we also assume the elastic behavior of the
medium to be linear. This assumption only needs to be true be-
tween two states, S; and So. Most human tissues have a non-
linear stress-strain relationship. Although the tissue can have
significant nonlinear behavior, we can restrict our analysis to
incremental deformations and forces as described in (16). Since
the incremental deformation between S; and S is usually small
(less than 2%), the assumption of linear elasticity is reasonable.

For high accuracy FEA solutions to the forward elasticity
problem, the object is usually meshed with nonuniform size
and shape elements. The mesh has higher element density
near curved interfaces where the modulus changes value, but

this requires knowledge of the object geometry. In modulus
reconstruction, the internal geometry is unknown, so rectan-
gular elements are used. One may argue that it is possible
to first obtain a rough modulus reconstruction using uniform
elements, then re-mesh the object with nonuniform elements
and reconstruct modulus again for higher accuracy. To do so
requires higher accuracy displacement estimates in the regions
with higher element density. Since the displacement field is
usually estimated with uniform accuracy, this approach is likely
to fail.

To understand the effect of the noise in the measured dis-
placement and force distribution, we conducted a number of nu-
merical simulations. The results of these simulations, shown in
Figs. 9 and 10, provide an estimate of the required accuracy in
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input displacement and force data. We found that the method is
less sensitive to noise in the force measurements than to noise
in the displacement estimates. The size of mesh elements can
be adjusted to change the sensitivity to displacement estimation
errors. For a given displacement error, larger mesh elements re-
sult in smaller the strain error.

From Figs. 10(b) and (d), we observed that the modulus es-
timates obtained from noisy displacement and force estimates
are also noisy (22% relative errors). However, since the modulus
contrast between normal and cancerous tissues is usually large
(greater than 100%) [36], the modulus image contrast-to-noise
ratio for cancerous lesions will still be high.

We cannot prove that the inverse problem has a unique solu-
tion from physical principles. However, our method provides a
unique solution algebraically. For the simulations that we have
conducted, when there is no noise in the input data, the solution
that we obtained is the same (within the numerical processing
errors) as the Young’s modulus distribution that we specified for
the object (see Fig. 7 and Section III-B). With the added noise
(to both surface force and the displacement distribution), our
method generates solutions that are close to the true Young’s
modulus distribution(see Fig. 9 and Section III-C). This sug-
gests that our method is stable and robust. Since we lack the
necessary equipment to simultaneously measure surface force
and the displacement distribution and, therefore, cannot test our
method experimentally. This will be the subject of future effort.

FEA treats 2-D elasticity problems as special cases of a gen-
eral three-dimensional (3-D) problem. The choice of these spe-
cial cases are either plain strain (elevational strain is zero) or
plain stress (elevational stress is zero). With the plain strain
assumption, the external force is assumed to be exerted on a
one—dimensional boundary, and it is difficult to relate such a
load condition to reality. With the plain stress assumption, the
object has finite thickness, and the calculated boundary force
can be more easily related to actual measurements obtained on
a 2-D surface.

Tissue deformation is 3-D in nature. However, we have found
that in vivo breast, for example, can be deformed such that the
motion perpendicular to the image plane is small. Thus, a 2-D
description of motion provides a reasonable approximation to
the plane strain condition. However, force measurements are
more easily related to the plane stress condition, and with this
assumption the resulting modulus estimates will have limited
accuracy. To overcome this limitation, we need to extend our
approach to 3-D. Extending 2-D modeling to 3-D is relatively
straightforward with FEA methods.

The examples and discussion of displacement estimation
techniques relate to our work in using ultrasound to track tissue
motion. There is also a growing body of work where magnetic
resonance techniques are used for estimating tissue elasticity
[44], [45]. The modulus reconstruction technique should be
applicable in that work as well.

V. CONCLUSION

A new approach for estimating the modulus distribution from
noninvasively determined force and displacement estimates is

reported. Simulations demonstrate that the modulus distribution
for an ROI can be determined from force measurements on a
single surface and displacement estimates within that ROL The
accuracy in force and displacement estimates required with this
approach are also estimated with simulations. These results sug-
gest that moduli of in vivo tissues can be estimated with rea-
sonable accuracy with minor modification to current clinical
imaging systems.

APPENDIX 1

In Fig. 1, nodes are locally numbered.? The element nodal
displacement vector for the rectangular element has eight com-
ponents and can be written as

690= (o2 o o2 & a2 o 62 o)
(18)
where 6@ and 6}';) are the displacement components in the z
and y directions of the first node, and so on for the rest of the
components; T is the matrix or vector transpose operator. The
element nodal force vector also has eight components and can
be written as

e T
S A D

The element stiffness matrix can be computed as [40]
b/2 a/2
K = / / tBOT MEOB©dzdy  (20)
—b/2J—a/2

where ¢ is the element thickness, M is the material property ma-
trix, and B is the displacement to strain mapping matrix. For ex-
ample, with linear elasticity problems and assuming plain stress

M(g) :E(e) (1 - I/(E))
(1+ @) (1 -20)
)
1l Zw 0
| 0 @1
0 0 1—20()
2(1—v(eY)

where E() and v() are the Young’s modulus and Possion’s
ratio of element e, and a and b are the element width and height.
For rectangular elements, the displacement to strain mapping
matrix is

B =
9H, 8H, 8Hg dH,4
9= 3?1 oz a?[ oz ag da 6?1
1 pelz i) g3 g4
0 L o ok o oL o 2
8H, 8H, ©8H, O8H, @8H; 8H; @8Hy JHy
dy oz Ay oz 8y oz 8y oz

22)

2The number starts from the lower left comer of the element and increases in
the clockwise direction. Note that other numbering methods can also be selected
as long as the connectivity matrix (introduced in Step 2) is created with the same
numbering scheme for all elements.
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where H;,i = 1,...,4 are shape functions. The shape functions
are usually selected to perform bilinear interpolations that have

the form
n=5(3-2)(3-»)
m =k (3+2) (3-1)
=35 (3+2) (349

m:% (g—m) (—g—-l—y) 23)

The representation of the element stiffness matrix (24) can
be obtained by substituting (21)+23) into (20) and performing
the double definite integration. For convenience in deriving the
inverse (modulus estimation) problem, the element stiffness ma-
trix can be written as

K© = EOK 24

where K isan 8-by-8 matrix in which each component is a func-
tion of the aspect ratio (a/b) and Possion’s ratio of the rectan-
gular element.

APPENDIX II

Following is a description of the global stiffness matrix as-
sembling process. '
1) Initialize 2 N-by-N null matrix (all zero entries), where

N equals the total degrees of freedom of the system or

N = number of nodes x degrees of freedom per node.
(25)
For the mesh shown in Fig. 2, N = 16 x 2 = 32.
2) For element e, generate a local (element) variable number
to global (system) variable number conversion index
vector '

I = (051*2 —1,Ce1%2,Cen*2 — 1, Ce2%2, Ce3*2 — 1,
Ce3*2, Ceq*2 — 1, ce4*2) (26)

where c; is the et® row and first column entry of the
connectivity matrix C, and so on. For the system shown
in Fig. 2, the index vector for the first element is

IM=(1 2 3 4 11 12 9 10). @7
3) Accumulate Kf;) t0 K (o) o) foréi = 1,...,8and j =
[

1,...,8 (X ,(; ) is the ith row jth column component of
matrix K(©); K () (o) is the 19 row I§e) column com-

7
ponent of matrix K; Ii(e) is the 7th component of the index
matrix).
~4) Iterate 2 and 3 for all elements.

APPENDIX IIT

The displacement boundary condition can be defined as
Ssub = 8., where b4 is a vector that is composed of a subset
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of the components of the global nodal displacement vector §;
&. is a known constant vector that specifies the nodal boundary
displacement. For example, a common displacement boundary
condition for the object meshed by our 9-node example shown
in Fig. 2 is to compress the top side downward 1% of the
total height of the object while the bottom is fixed vertically.
This example displacement boundary condition can be defined
as S = (82 62 8 8Os b Oy O30 632)" and
6 = (0 0 0 0 001h 001k 0.01h 0.01h)7,
where h is the height of the object. The penalty approach can
be expressed as the following seven steps.

1) Initialize the global force vector f as a null vector.

2) Select alarge number L (a choice for Lis L = maz|K|x
10* as suggested by Chandrupatla [41].

3) According to 85y, set the corresponding fup to L X 6.

(fsw=(f2 fs fo fs foo fas fro fs)  for
the given example).

4) According to 8sub, add L to the corresponding diagonal
component of K (for our example, these diagonal compo-
nents are K3 2, K44, Ko 6, Kg 8, Ka6,26, K 28,28, K30,30,
and K33 32). :

5) Solve K6 = f for é.

6) Calculate reaction force foub = —L{(8sub — 6.).

7) Replace dsyp With &..
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NOISE REDUCTION STRATEGIES IN FREEHAND ELASTICITY IMAGING
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Abstract— We are developing a clinical ultrasonic
imaging system for real-time estimation and display
of tissue elastic properties. We have demonstrated
that real-time feedback of elasticity images is essen-
. tial for obtaining high-quality data (consecutive im-
ages with high spatial coherence). The key element to
successful scanning is real-time visual feedback which
guides the patient positioning and compression direc-
tion. Our data have clearly demonstrated nonlinear-
ity in the strain properties of different tissue types.
We have also demonstrated that a comparison of the
area of a breast lesion observed in strain images ver-
sus B-mode images is a sensitive criterion for differ-
entiating malignant from benign tumors. Frame-to-
frame variability in strain images somewhat degrades
the ability to observe these phenomena. Three strate-
gies for reducing frame-to-frame strain image noise are
described. The combination of these post-processing

~ strategies provides a signicant improvement in the

quality of long sequences of strain images.

I. INTRODUCTION

We are implementing and testing real-time mechan-
ical strain imaging integrated into a clinical ultrasound
imaging system (Elegra, Siemens Medical Solutions)
{1]. Our work was motivated by promising in vivo re-
sults reported by Garra et al. [2]. In that report they
described data acquisition based on a modied mam-
mography system. The use of that system limited the
areas of the breast from which they could acquire data.
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Freehand scanning has been the dominant method of
clinical sonography for many years. So, freehand scan-
ning will likely more quickly gain clinical acceptance
of elasticity imaging if it can be performed efciently .
We have argued that real-time feedback to the hand-
eye coordination system allows constant manipulation
of the boundary conditions of deformation and allows
the observer to know when high quality strain image
data are acquired. The small delay between acquiring
successive frames (tens of milliseconds) and the rela-
tively slow deformation rate (cyclic freehand deforma-
tion at about 1 Hz) likely results in primarily an elastic
response in tissue (minimal viscous effect) [3].

In vivo elasticity images of breast lesions obtained
with our system have high contrast-to-noise ratios. In
fact, relatively long sequences (30 sequential frames
or more) of high quality strain images are normally
obtained in clinical trials. An example image from a
breast tumor is shown in Fig. 1. Using our system
we have demonstrated that broadenomas often have
a surface pressure-dependent strain image contrast [1].
The strain image contrast for a broadenoma is gener-
ally highest with the least surface pressure and contrast
decreases as the pressure is increased. In addition, the
relative size of a lesion in B-mode versus strain im-
ages is a sensitive criterion for differentiating malig-
nant from benign lesions [1,2]. A plot of lesion area
measured in B-mode images versus lesion area in the
corresponding strain images (Fig. 2) illustrates this per-
formance.

Viewing strain image sequences allows visualiza-
tion of strain image noise that is not apparent in single
strain images. Given that pressure dependent strain im-
age contrast and the relative lesion size comparison are
useful criteria for differentiating breast lesions, reduc-
ing that frame-to-frame variability in strain estimates
will improve the ability to visualize that varying con-
trast and better determine lesion boundaries.
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Fig. 1. A B-mode and strain image pair obtained by frechand

scanning of a breast carcmoma in vivo.
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Fig.2. A comparison of lesion area for carcinomas (circles), cysts
{squares) and fibroadenomas (dizmonds).

Strategies for reducing that frame-to-frame variabil-
ity in local strain estimates is the subject of this report.
The goal is to reduce noise while maintaining spatial
resolution. An additional goal is to obtain reduction in
strain image noise with minimal incremental computa-
tional oad such that the technique can be implemented
in on-line processing for clinical trials. Several pos-
sible approaches are suggested, and results of imple-
menting those approaches are encouraging.

11, MATERIALS AND METHODS

Strain Image Formation

A 2-D block matching algorithm, based on the sum-
squared difference (SSD) algorithm, is used for mo-
tion tracking in our implementation. The kemel size
was selected to approximate the 2-D pulse-echo ul-
trasound point spread function for the system em-
ployed (Siemens SONOLINE Elegra with 7.51.40 and
V¥X13-5 linear arrays). Data were processed on the
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image processor subsystem of the Elegra. The algo-
rithm displays streaming B-mode and strain images
side-by-side at about seven frames per second and
stores the full sequence of 1-Q echo data for on-line

post-processing.

Patient Scanning

All patients provided informed consent consistent
with the protocol approved by the Human Subjects
Committee (Institutional Review Board) at Kansas
University Medical Center. Patient scans were per-
formed in a manner consistent with a normal breast
ultrasound exam; the breast was scanned with the pa-
tient (typically) in the supine position with her arm be-
hind her head. When the breast lesion was located,
the transducer was pressed toward the chest wall at
a steady rate in an effort to achieve about 0.5-1.2%
compression frame-to-frame while repeating the com-
press/release cycle for relatively large (>10%) com-
pression. The compression technique was adjusted, by
changing the compression direction or patient position,
until there was nearly uniaxial compression with min-

_imal elevation motion. Real-time B-mode and strain

image display allowed visualization of the data qual-
ity. Using this scanning technique, no patient has ex-
perienced any discomfort in our procedures.

II1. SOURCES OF NOISE AND STRATEGIES FOR
IMPROVED RESULTS

Small Deformation—Low Average Strain )

The strain image contrast-to-noise ratic increases
as the applied (uniaxial) strain increases for frame-
average strains up to about 5% (see, for example [4]).
Frechand deformation sometimes results in nonuni-
form frame-to-frame average strain. The pairing of f
echo frames of data in post-processing can be adjusted
to select appropriate frame pairs to obtain, nominally,
1-1.5% frame-average strain [5). A representative re-
sult for a in vivo breast fibroadenoma is shown in fig-
ure 3.

Large Displacement Errors

Regardless of the average applied strain, the motion
tracking algorithm, and whether that strain was applied
with frechand scanning or motorized deformation, dis-
placement estimation errors sometime occur. When
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Fig. 3. The frame-to-frame strain obtained by freehand scan-
ning of a breast in vivo and pairing adjacent frames (dashed) or
dynamically adjusting the frame pairing in post-processing (solid)
for strain estimation.

using a very small 2-D kernel to track motion, rela-
tively large exrors are easily detected. A statistical ar-
gument and a moving linear regression can be used to
detect displacement estimates that are so different from
their neighbors that they are very unlikely to be cor-
rect. For example, if we know that adjacent displace-
ment estimates differences of one sample imply a local
strain of 7%, and the frame-average strain is only about
1%, then adjacent displacement estimate differences of
more than one sample are extremely unlikely. We can
use linear regression to estimate the local displacement
and compare each estimate to the local regression fit. If
the difference between the individual estimate and the
regression value is more than some threshold, for ex-
ample one sample, that estimate is judged to be in error
and is replaced by the regression value. This approach
is very effective at detecting and removing large dis-
placement errors prior to estimating local strain. An
example of this technique applied to in vivo breast data
is shown in Fig. 4.

1t is straightforward to extend this approach and fit
local displacement estimates to a smalt (planar) sur-
face to detect and exclude large errors. The advantage
of using a surface fit is that it minimizes local axial
shear. The size of the surface, as with the linear re-
gression window, is a tradeoff between tracking true
displacements (resolution) with small surfaces and re-
jecting consecutive displacement errors (noise reduc-
tion) with a Jonger window. A 2 mm x 2 mm surface
provides subjectively satisfactory results.

{
(]
*
-0

|
F-N
o

Displacement (samples)
b &
!
.I...‘»

50

KA
oh?

200

|
L
(=]
ol e
B -

100
Depth (samples)

Fig.4. Displacement estimates resulting from 2-D block matching
{dashed) and moving linear regression (solid) for those results as a
function of depth for one line of data.

Complex Motion

Correlation search techniques for motion tracking,
such as that employed for our real-time strain imag-
ing, work well when the deformation is small and
the motion is relatively simple [6). When the mo-
tion is relatively large (>5% strain) or includes obvi-
ous shear the performance of correlation search tech-
niques degrades. Under these conditions higher order
motion models typically improve motion tracking per-
formance but at higher computational load [7].

In these techniques, a cost function is defined that
minimizes the constraints used to model the motion.
The basic approach assumes that the brightness of each
point in the image remains constant from one frame of
data to the next. A brightness constraint, £y, is then
used to estimate the deformation field that describes
the transformation from one frame of data to the next.
That general concept was adapted to rf echo samples,
instead of B-mode pixel brightness in our previous
work [8]. Our current approach uses the sum squared
difference between pre- and warped post-compression
echo fields as the brightness constraint. A smoothness
constraint, E,, is added to the cost function to place
a penalty on large deviations from average local mo-
tion. Numerous approaches to create smoothness con-
straints have been reported. One of the earliest smooth-
ness constraints was reported by Hom [9].

From our previous work using similar techniques [8}
we recognized the importance of the constraint func-
tion in the overall performance of this approach. We
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are investigating the use of strain energy as a smooth-
ness constraint function, as suggested by Bajscy [10].

The resulting cost function is
¢~ [[aBs+ Bisdy M
Q

where + is an adaptively chosen scale factor. Example
images of the same data with and without these noise
reduction strategies are shown in Figs. 5 and 6.

Fig. 6. A B-mode and strain image pair with all three noise re-
duction strategies.

1V. DISCUSSION '
Real-time display of side-by-side B-mode and strain
images is essential for guiding the manipulation of
boundary conditions for the mechanics experiment that

" is strain imaging. The real-time feedback to the hand-

eye coordination systems allows the sonographer to
manipulate the compression direction, force, and rate
to obtain high-quality sequences of strain images. The
system involves no remote data acquisition or display,
and no additional signal processing hardware. It is
fully integrated into the Elegra system.

The sequence of B-mode and strain image pairs al-
lows the sonographer to select images representative
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of the “typical” strain image for a lesion. This abil-
ity, along with better determination of lesion bound-
ary available by viewing a sequence of images, has
likely improved the ability to measure true lesion size
in strain imaging compared with the results reported by
Garra, et al.

Deformable model approaches are iterative and
require an initial displacement field approximation.
When that approximation has large errors, accurate
displacement estimates are influenced by the presence
of local displacement errors. By first using the above
techniques to minimize local displacement errors, we
start the deformable model iteration with a reasonable
approximation to the true displacement field. The re-
sult is a significant reduction in frame-to-frame vari-
ability in strain images and improved detection of le-
sion boundaries and contrast changes.

V. CONCLUSIONS
Strategies for reducing strain image noise in a se-
quence of strain images are described. Tests of these
strategies on breast data acquired in vivo demonstrate
improvements in the image sequence. In combination
these strategies provides significant improvements in
the visual interpretation of a sequence of strain images.
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Abstract

A new mode of imaging with ultrasound is under development in several laboratories
around the world. The new mode estimates some measure of the viscoelastic properties of
tissue. The information displayed in these images is a surrogate for that obtained with
manual palpation. This report reviews some of the fundamental concepts in elasticity
imaging and highlights the development of a system for a real-time elasticity imaging
being tested for in vivo breast and thyroid imaging. Results of early laboratory tests that
motivated this effort are reviewed and results obtained using this system with in vivo
tissues are included. Imaging the elasticity of in vivo breasts suggest that invasive ductal
carcinomas appear, on average, more than twice as large in an elasticity image compared
to the same lesion in an ultrasound B-mode image, but fibroadenomas and cysts are
nearly equal in size in the two image types. Data from that real-time system also
demonstrate that the relative stiffness of many fibroadenomas change as they, and their
surrounding tissue, are deformed. The utility of this technology, and the new information
it provides, suggests that it might soon be available on commercial ultrasound imaging
systems.

Summary Statement A
Elasticity imaging could significantly improve the diagnosis of breast abnormalities using
ultrasound. »
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INTRODUCTION

It is the experience of many that palpation, pressing on the surface of soft tissue in
an effort to ‘feel’ abnormalities, is a commonly used diagnostic tool. This tool has been
used for thousands of years and is the primary diagnostic tool for some diseases.
Examples include breast self examination for sensing breast ‘lumps’ and digital rectal
examination for prostate cancer. Palpation is known to be subjective and it lacks
sensitivity to small abnormalities that are deep beneath the skin surface.

Improving sensitivity and reducing the subjectivity of palpation could have a
significant impact on breast cancer prognosis. Breast cancer is the second-leading cause
of cancer deaths in women. Over 200,000 new cases of invasive breast cancer are
expected in the USA this year alone. It is anticipated that approximately 40,000 women
in the USA will die of breast cancer in 2003. The prognosis for breast cancer patients is
best when the disease is detected at an early stage Specifically, 5- and lO—year survival
statistics are best when cancer is noninvasive' and is less than 1cm in diameter.
Improvements in mammography have resulted in imiproved detection of breast lesions,
and mammography has been shown capable of detecting smaller tumors in young women
than either breast self-examination or clinical breast examination.> However,
mammography is not infallible. Approximately 15% of palpable breast cancers are not
detectable with mammography, and this number is likely higher in younger women.* A
combination of clinical palpation with either mammography or sonography has been
shown to significantly increase the sensitivity and specificity of breast cancer detection.’
One of the greatest difficulties in mammography is imaging the radiographically dense
breast. Unfortunately, women with mammographically-dense breasts have a risk of
breast cancer that is 1.8—6. O times greater than that of women the same age with little or
no mammographic den51ty Small lesions become much more difficult to detect when
obscured by dense connective tissues and ducts. Several recent studies have demonstrated
that sonography has higher sensitivity for breast cancer detection than mammography
alone, ’ mammography combined with physical examination,”® or mammoscmtlgraphy
Furthermore, the sensmvng' of mammography decreases significantly with increasing
mammographlc den31ty Hormone replacement therapy reduces the sensmv1ty of x-ray
mammography'! and increases the need for alternate diagnostic tools.

In an effort to improve the sensitivity of palpation and provide quantitative
measures of ‘palpable,” research groups around the world are actively working toward
imaging technologies that display quantitative maps of ‘tissue stiffness.” This report
describes the physics of palpation and uses that information to understand the limitations
of palpation. That basic physical understanding is then used to describe the various
approaches to these imaging technologies. The emphasis then turns to elasticity imaging
systems and the development of an elasticity imaging system that is implemented on
commercial sonography system and displays real-time elasticity images with freehand
scanning. Results of preliminary tests of the utility of that system for dlagnosmg breast
abnormalities are then described.

Previous reviews of elasticity imaging using ultrasound are available.'*!* This
report updates those prior reviews and emphasizes a specific real-time elasticity imaging
system and results obtained with that system.
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The physics of palpation

An understanding of how palpation works can be obtained by examining the basic
physics of applying an external deformation to an object. Begin with a simple model of
forces and deformation. A standard concept presented in introductory physics is the
elastic deformation of a simple spring (a 1-dimensional object) due to a known applied
force. Figure 1 illustrates the typical simple experiment to study elasticity. A known mass
suspended from a simple spring results in a measurable elongation of that spring.
Suspending a different known mass results in a different elongation of the spring. Each
mass in the standard gravitational field of the earth places a known force on the spring.
The difference in these forces and the difference in the elongations of the spring due to
those forces can be combined using Hooke’s law to estimate the spring constant, k, which

_is characteristic of the spring and quantifies its ‘stiffness.’

- To extend the concept of force and deformation to a 3-dimensional (3-D) object,
consider separately the forces and resulting displacements. The analysis will be
simplified by assuming that the material is homogeneous and isotropic (meaning that the
material properties are uniform in composition without any directional dependence in
elasticity). Ignore the class of forces, called ‘body forces,” which act on all volume
elements of the material (such as gravity and inertia). The class of forces to consider is
called ‘surface forces’ because they have units of force per unit area and can be viewed as
acting on a surface element of the object. That surface element is not necessarily on the
exterior boundary of the object, but can be a surface of an arbitrary interior volume
element. The orientation of that surface is described by a vector that is perpendicular to
the surface element (a normal vector), thus a 3-D coordinate system (x;, i=1,2,3 or
X1,X2,X3) is required to describe the normal vector. A force acting on that surface element
has a magnitude and direction (force is a vector quantity), and the direction of that force
is not necessarily perpendicular to the surface element. Thus, to describe the direction of
the force vector also requires a 3-dimensional coordinate system (yj, j=1,2,3). To
maintain generality and simplicity (to obtain principle components) in the description of
the surface force two separate 3-D coordinate systems are used (x; and y;). Collapsing the
arbitrary surface element to a point we obtain a ‘stress tensor.” A tensor is a
generalization of the concept of a vector; tensor calculus is used to study the derivatives
of vector fields. The stress tensor, o, is a 3x3 matrix corresponding to the nine
combinations available by combining the two independent 3-D coordinate systems of the
force and the surface element on which it acts.

Similarly, consider the displacement of a volume element acted on by an external
force. If the motion does not involve a change of volume or shape of the object, the
motion is termed ‘rigid body motion.” If, on the other hand, the object is deformed
(changes shape or volume) as a result of the external force the description of motion is
again more complex. A 3-D coordinate system is required to describe the motion in
space. To maintain generality and simplicity (to obtain principle components) in the
description of the gradients (spatial rate of change) of that deformation (strain is the
spatial rate of change of displacement) another 3-D coordinate system is required. The
strain tensor, gy, is thus another 3x3 matrix corresponding to the nine combinations
available by combining these two independent 3-D coordinate systems.

An equation to relate the nine-component stress tensor to the nine-component
strain tensor is called a constitutive equation. The form of the constitutive equation
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depends on whether a material is a fluid (an ideal fluid with no viscosity or a Newtonian
viscous fluid), purely elastic (e.g., an idealized solid) or viscoelastic (neither purely
viscous nor purely elastic). In a purely elastic (lossless) deformation, the stress is
dependent only on the strain

Oj = Cijkl €xl.
This equation is analogous to Hooke’s law for the 1-D spring, but it accounts for forces
and deformations in all three directions. The quantity Cjq is the ‘modulus tensor’ of
elastic coefficients and is the equivalent of the spring constant, k, used to describe the
deformation of a spring. The four subscripts indicate that four sets of 3-D coordinate
systems are required for a general descrxptlon of the relationship between the stress and
strain tensors, and thus, Cjzis has (3*) 81 components. The stress and strain tensors are
symmetric and therefore each contains at most six independent components. Therefore,
the modulus tensor for infinitesimal elastic deformatlons is also symmetrlc and contains
at most 36 independent components. It can be shown'* that by assuming a material to be
completely isotropic, the number of independent elastic coefficients is reduced to two
(called the Lamé constants). A more detailed description of stress and strain can be found
in any text on continuum mechanics (see, for example, reference 15).

The elastic coefficients that describe the behavior of a material are absolute
measures of intrinsic properties of the material. Estimating these quantities requires
measurements of stresses and strains under well-characterized experimental conditions.
For example, the viscoelastic properties of many soft tissues under cyclic uniaxial
loadmg are found to depend on the strain range, the strain rate, measurement temperature,

1% It is often easier to simplify the experiment and only measure components of the
surface stress distribution or the internal strain distribution. The drawback is that stress or
strain alone are relative quantities and are not intrinsic to the material under study.

The basic physics of elasticity (stress and strain) can be used to understand the
limitations of palpation. Engineers often use a computational tool called ‘finite element
analysis’ (FEA) to study the behavior of objects under external forces or deformations.
FEA was used to simulate the stress and strain involved when deforming a uniform block
containing a spherical inclusion, as shown in Figure 2. The upper surface of the block is
uniformly displaced by 1% of the total height. The lower surface is allowed to move
freely laterally and the sides have unrestricted motion. The simulation shows the
distribution of stress and profiles of that stress distribution are plotted on the right. In
palpation, the fingers press on the tissue to deform it and then sense the stress distribution
that results. The simulation shows that as the sphere moves further away from the surface
(profile further from the sphere), the variation in stress across the profile decreases
suggesting that the sphere would be more difficult to palpate (less stress contrast
available to the fingers to sense) as it is placed deeper in the block.

In vitro tissue studies

The most common approach to studying the viscoelastic properties of soft tissues
is to sinusoidally deform in vitro samples of tissue, measure the force required to induce
the deformation and study the phase relationship between force and displacement. In
vitro studies of the viscoelastic properties of breast tissue'!” have demonstrated several
findings that are significant to elasticity imaging (see Table 1). First, for cyclic load-
unload experiments, there is little phase delay between the sinusoidal deformation and
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response (strain and stress) for compression frequencies near 1Hz. This shows that the
energy required to deform the tissue is nearly completely recovered when the deforming
force is released (nearly lossless deformation). Thus, in vitro breast tissue behaves as a
nearly completely elastic medium at these strain rates, and the viscous component can be
ignored. These deformation motion frequencies are typical of that used in clinical
ultrasound breast exams with compression. Second, the stress-strain relationship for most
breast tissues is non-linear, and the degree of non-linearity varies with tissue type.
(Materials with linear stress-strain relationships exhibit stress that is directly proportional
to strain; that is, they exhibit constant ‘stiffness.” Materials with nonlinear stress-strain
relationships change stiffness, most commonly getting stiffer, as they are deformed.)
Third, the elastic moduli of breast tissue, obtained from the slope of the stress-strain
curves, vary significantly among breast tissue types and strain range. In summary, breast
tissue is mostly elastic for the strain rates likely encountered with freehand scanning,
object contrast is likely high in strain and modulus images, contrast will likely be
different for different lesion types, and contrast will likely change with increasing
compression.

Imaging the elastic properties of tissue

Approaches to elasticity imaging can be classified by the modality of the signal
source (primarily ultrasound or MRI), the mechanical parameter estimated (e.g., stress,
strain, or modulus), or a descriptor of the experimental procedure (“dynamic” or “(quasi-
)static” techniques). The mechanical properties estimated with these techniques are
related. As described above, stress and strain are mutually responsive quantities, but they
are not intrinsic material properties. Images of stress and strain are maps of a parameter
relative to its surroundings (as a mammogram maps the relative x-ray attenuation, for
example). Elastic moduli are intrinsic material properties generally described with a
matrix (as described above), but for practicality experimental conditions are manipulated
and material properties (such as incompressibility, homogeneity and isotropy) are
assumed so that the size of this matrix is reduced to one or two parameters.

Several research groups are developing techniques for imaging the stress
distribution. Most notable among the stress imaging techniques is the work from
Wellman, et al.,18 using a piezo-resistive sensor array (TekScan, Inc., Boston, MA)
coupled to a position tracking system. This system closely mimics the mechanics of
palpation and demonstrates a strong correlation between the size of the lesion measured
with the tactile system and the lesion size measured following resection. The
performance for small lesions (less than 10mm) that are relatively deep (more than
10mm) remains to be seen. Also noteworthy is the work of Sarvazyan'® in which he
attempts to solve the inverse problem of determining the 3-D modulus distribution that
causes the measured surface pressure distribution.

Strain imaging has received the most attention in elasticity imaging. The earliest
implementations used M-mode acquisition and cross correlation to track tissue motion
and study tissue elasticity.”**' In later studies Doppler processing techniques were used
to track differences in motion?* and “sonoelasticity imaging” soon followed.?* The
Doppler processing techniques were the first “dynamic techniques” and derived their data
from ultrasound. ‘Static compression elastography’ is the most common approach to




strain imaging. Numerous groups are pursuing ultrasound-based strain imaging with
efforts in algorithm development,?%*"?%% performance evaluation,’®*'*2 and clinical
testing®"* (representative citations).

The basic information derived in strain imaging techniques is the relative tissue
displacement. An imaging system (typically ultrasound or MRI) acquires (pre-
deformation) data corresponding to a map of tissue anatomy. A small deformation is
applied, either through an external compressor or physiological function (breathing,
cardiac pressure variations, etc.), and another (post-deformation) map of the anatomy is
acquired. The displacement field in the deformed tissue is estimated by comparing these
two maps of anatomy. Mechanical strain is estimated by calculating the gradient (the
spatial rate of change) of the displacement field. In ultrasound the displacement along the
acoustic beam propagation (axial) direction can be estimated far more accurately and
with higher precision than in the lateral or elevational directions.*?

An important aspect for clinical acceptance of ultrasound strain imaging is the
technique for deforming the soft tissue between image pairs. Most phantom experiments
in the literature used motorized compression devices and extensive fixtures. These
devices are not likely to gain clinical acceptance because they either limit the locations
that strain imaging can be applied or are time consuming to incorporate. Freehand
scanning, where tissue is deformed with the surface of the transducer, is desirable.

Developing a real-time strain imaging system that allows freehand scanning is
essential for clinical utilization. The strain imaging algorithm must be computationally
efficient, insensitive to motion irregularities and track tissue motion in 2-D (eventually 3-
and 4-D). Block matching (template matching) algorithms are widely used in image
processing applications for tracking motion. The most notable application is movie image
compression algorithms such as MPEG. The use of block matching in ultrasonic imaging
was first reported by Trahey, et al. for blood flow estimation.*® Block matching is a good
candidate since it is simple in principle and is capable of tracking motion in 2-D.
However, for strain imaging, the algorithm needs to be modified to increase its
computational efficiency and insensitivity to decorrelation noise.?’ (Decorrelation is a
measure of how similar two signals are. That similarity is measured with cross correlation
or surrogate measures of correlation. Echo signals decorrelate when there is high
electronic noise or when there is large deformation of the tissue.)

There has been less attention focused toward strain imaging systems than toward
strain imaging algorithms, data simulation, and performance testing. Bamber, et al., have
reported® their progress in freehand elasticity imaging. Their system lacked real-time
feedback in the data acquisition process, but still, they found that it is possible to obtain
good elasticity data with freehand scanning. Their rate of success was relatively low, and
significant pre- and post-processing was necessary to obtain accurate displacement

33,3435

.estimates. The system reported by Garra, et al® employed a modified mammography

paddle with a hole cut out to provide an acoustic window. This allowed (relatively) easy
correlation with the mammogram. However, the acoustic data acquisition system was
crude. The system only allowed scanning with a SMHz transducer—lower than the
standard of its day (7.5MHz)—and had significantly poorer performance than current
systems. In addition, the digitization was external to the ultrasound scanner resulting in
reduced electronic SNR and increased timing jitter in the acquired echo signals. The
increased jitter significantly reduces the performance of displacement estimates in strain




-imaging. The current system used by that group incorporates a mid-range ultrasound

scanner with a 5-axis motor controlled compression system.>” The first real-time
elasticity imaging system was developed for prostate imaging.38 Data were acquired in a
sector-shaped scan from an endo-cavity transducer and a 1-D tracking method was used.
As a result, elasticity image frame rates were quite high at the expense of image quality.

The in vivo studies of strain imaging reported by Garra, et al.,** demonstrated
that strain imaging has merit in differentiating among solid tumors in breasts. Their most
significant finding was that invasive ductal carcinomas are significantly wider in strain
images than in the corresponding B-mode image, and this difference is likely due to the
desmoplastic reaction that surrounds this tumor type. ‘

Modulus imaging has also been investigated, and there are three primary
approaches in the literature. The first approach estimates the shear wavelength in tissue
and from this directly estimates the shear modulus of the tissue.*****! The other

-techniques require simultaneous measurements of stress and strain and require

assumptions regarding the boundary conditions of the experiment,*>#>#4:4546 Compared to

strain imaging, modulus imaging has lower spatial resolution, higher noise, and the
assumptions regarding boundary conditions can result in biased estimates. However,
estimating an intrinsic tissue parameter, instead of the relative parameters estimated in
stress or strain images, makes this an attractive approach. )

There are also methods under development that use acoustic radiation force to
deform tissue and study tissue viscoelasticity**** with promising results. Other novel
approaches to describing the viscoelastic behavior of tissues, such as those reported by
Greenleaf, et al.,5 %51 are also under mvestigation.

Early work in strain imaging demonstrated the limitations of tracking motion in -
D and motivated the development of 2-D and 3-D motion tracking algorithms for
elasticity imaging.2"***? Those studies demonstrated that 1-D tracking failed to correctly
track motion in a 3cm wide field of view with as little as 0.6% compression, and motion
tracking errors got increasingly worse with increased compression. However, by using 2-
D tracking algorithms that appropriately compensate for lateral motion, high contrast-to-
noise images of mechanical strain could be obtained with compressions of more than 5%
in phantoms (see Figure 3). The basic approach, called ‘companding,’ was to use 2-D
motion tracking to align (warp) either the pre- or post-deformation data field prior to 1-D
cross correlation.

Other early work also demonstrated the need to control motion during elasticity
imaging experiments. The images in Figure 4 demonstrate that it is essential to control
the motion during deformation especially with regard to elevation motion. A typical
clinical ultrasound imaging system acquires echo data, nominally, from a plane of tissue.
Any out-of-plane motion of tissue will result in echo signal decorrelation and reduced
elasticity image quality.

The key to obtaining high quality elasticity images is the quality of the motion
tracking algorithm. Ultrasound radio-frequency (rf) echo signals, the same data used to
form a B-mode image, are used as a map of anatomy. Those same signals are used to
track the deformation of the anatomy. The task is to accurately track the anatomical
deformation with minimal uncertainty (displacement estimate variance or covariance). A
review of many of the techniques used for tracking tissue motion with ultrasound can be




found in reference 53. A tutorial on the general topic of waveform coherence and time-
delay estimation can be found in reference 54.

A review the assumptions used in signal correlation analysis can help to
appreciate the difference between many motion tracking algorithms. A typical
assumption in motion tracking based on time delay of ultrasound echo signals is that the
deformation of the tissue is minimal (or recoverable) within the echo signal segment
being tracked. Another common assumption is that the observation window (data
segment length) is large compared to the time delay. Thus, a relatively long data segment
is needed to avoid ambiguous displacement estimates (referred to as ‘peak hopping’). The
plot in Figure 5 demonstrates that with an rf echo segment as short as 3mm and with only
1.5% axial strain, there is obvious echo signal decorrelation between the pre- and post-
deformation A-lines. However, the single large peak in the cross correlation function
plotted in Figure 5 demonstrates that there is little ambiguity in the time delay required to
match pre-and post-deformation signals. Using shorter rf echo segments in motion
tracking reduces the decorrelation within the echo signal segment, and increases the
waveform coherence, as shown in Figure 6. However, short data segments increase the
likelihood of time delay ambiguity (e.g., a one-wavelength segment of rf looks very much
like many other one-wavelength segments). Using multiple (usually adjacent) A-line
segments reduces the likelihood of ambiguity, as shown in Figure 7. Short data segments
also demonstrate the benefit of interpolating (up-sampling) the rf echo signal. The
waveforms shown in Figure 6 illustrate that waveform coherence would improve if time-
delays of less than one sample were available. An alternative is to interpolate the
correlation function, but this requires a model for the functional form of the cross
correlation function. If up-sampling the rf echo signal can be justified, it reduces the need
for an accurate model of the cross correlation function when interpolating sub-sample
displacement estimates, as show in Figure 8.

Development of a real-time strain imaging system

Experience in developing motion tracking algorithms and experiments with
phantoms and in vitro tissues suggest criteria for a clinically viable elasticity imaging
system. First, the system must track tissue motion in 2-D (or 3-D, if available) for high
contrast-to-noise images.?"® Second, the system should use short 2-D data segments
(kernels) for motion tracking to minimize decorrelation within the data segments and to
minimize time-delay ambiguity. Third, the system should provide real-time elasticity
images, as well as normal B-mode images, to allow the user to monitor the images being
acquired and manipulate the transducer array with freehand scanning thus insuring that
the tissue motion is suitable for forming high-quality elasticity images. In addition, the
data acquisition technique should be similar to that currently used in sonography to
increase the likelihood of clinical acceptance. A large deviation from standard clinical
practice would likely receive a more skeptical assessment by potential users than a subtle
modification to current practice.

A novel motion tracking algorithm has been developed and implemented on a
clinical ultrasound imaging system (SONOLINE Elegra, Siemens Medical Solutions,
Issaquah, WA).? Phase-sensitive (I-Q) echo data are processed internally in real-time on
the Elegra to estimate displacement and strain. The system can use any of the linear array
transducers available on the Elegra and is compatible with Tissue Harmonic Imaging on
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that system. The system displays B-mode and strain images side-by-side on the normal
system display at about 7 frames/sec. A region of interest (ROI) is displayed in the B-
mode image and displacement and strain are estimated for tissue within that ROI. The
size and location of the ROI can be manipulated with front panel controls. When
scanning, the normal freeze and cine capabilities of the system are available. When a
sequence of data is acquired and stored (frozen), on-line post-processing capabilities
allow the ROI location and size to be modified, and other common tools such as
modifying the grayscale mapping are available. Initial tests of the elasticity image noise
and spatial resolution are found in reference 29. Spherical lesions as small as 2.4mm
diameter that are three times stiffer than the background were easily displayed. The
protocol for clinical testing of this system was approved by the Humans Subjects
Committee at the University of Kansas Medical Center where that initial work was
performed.

A critical issue in the development and utility of any imaging system is the
achievable spatial resolution for a given task. The ability to image a 3mm diameter
sphere in a phantom is encouraging. More importantly, those encouraging results are
corroborated with the ability to image small structures in vivo. For example, images of an
in vivo 3mm cyst are shown in Figure 9. Although the ability to image small structures in
vivo is clearly demonstrated, the required contrast to view objects of a specific size is
unknown. Investigations are underway to evaluate this through contrast-detail analysis.*’

The ability to acquire and view long sequences of elasticity images has provided
the opportunity to observe nonlinear elastic behavior of in vivo tissues. Nonlinearity in
the stress-strain relationship of tissue was observed with in vitro breast tissues,'” and was
therefore expected with in vivo tissues, but was only recently observed with the
availability of a real-time elasticity imaging system.>* Figure 10 shows an example of the
implications of nonlinear elasticity in strain imaging. At low preload (transducer barely in
contact with the skin surface and applying minimal pressure) the fibroadenoma appears
dark in the strain image. As the preload is increased (pressure applied with the transducer
increasing deformation), the strain image contrast of the fibroadenoma (its stiffness
relative to the surrounding tissue) decreases. This behavior might explain why others
have found that some fibroadenomas are not visible in single strain images.**

One of the significant findings in prior clinical trials of in vivo elasticity
imaging33 was that the size of a breast lesion displayed in strain images, relative to it size
in a normal B-mode image, appears to be a significant criterion for differentiating
malignant from benign breast lesions. Figures 11 and 12 show examples of the B-mode
and strain image pair for a fibroadenoma and an invasive ductal carcinoma, respectively.
- In each case, the lesion is traced in the B-mode image and that tracing is reproduced in
the respective strain image. The lesion boundary traced for benign lesions have about the
same size and shape in the two image types. However, the lesion boundary traced in B-
mode images of invasive ductal carcinomas is much smaller than the lesion displayed in
the respective strain image. On average, the area of these carcinomas displayed in strain
images is three times larger than that of B-mode image:s.34 It is postulated*>** that the
increased size of carcinomas in strain images is due to the desmoplasia that often
surrounds invasive ductal carcinoma. .

To test the utility of relative lesion size for differentiating between benign and
malignant breast lesions, five observers individually viewed a set of image sequences
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from in vivo breast elasticity imaging. Each observer selected the image pair from a
sequence (movie loop) that was most representative of the B-mode and strain image pair
from that sequence. Each observer then traced the outline of the lesion in each image type
and measured the width and height of the lesion in each image. This was repeated for
data from 97 movie loops of 55 unique lesions from 29 patients. A plot of the average
lesion area for each lesion measured by the group of observers is shown in Figure 13.
These data are consistent with those reported by others® and suggest that elasticity
imaging may be a useful tool to improve the utility of breast sonography. If the ratio of
lesion size in strain images versus B-mode images proves to be a sensitive criterion for
increasing confidence of a benign diagnosis, the fraction of biopsies that prove to be
benign tissue will likely be reduced at significant savings in health care expense and
trauma to the patient and their family and friends.

Summary

Elasticity imaging is a relatively new technique for studying the stiffness of
tissue. The information acquired with these techniques is similar to that obtained with
manual palpation, but elasticity imaging is more sensitive and less subjective than
palpation. Further, the information is provided in an image format so that it can be
compared with data from other image modalities and it can more easily be documented
and shared with others.

Several interesting approaches to elasticity imaging are currently being
investigated by research groups around the world. Different approaches provide different
information about the viscoelastic properties of tissue. Many of these approaches
emphasize the elastic properties of tissue due to the techniques of data acquisition.

At least one method for elasticity imaging is under development that produces
images of mechanical strain in real-time using a freehand scanning technique very similar
to that of standard breast sonography examinations. The system is integrated into a
clinical sonography system without any external equipment and involves software
changes only. In vivo tests of this system have demonstrated the ability to image small
breast lesions with confidence. It has also allowed the visualization the effects of
nonlinear elasticity of in vivo breast tissues. Further investigations with this system
suggest that benign breast lesions are about the same size and shape in B-mode and strain
images, but invasive ductal carcinomas tend to be significantly larger in strain images
than in the corresponding B-mode images. This fact suggests that elasticity imaging
might increase the utility of breast sonography and might be offered in clinical
sonography systems in the near future.

Acknowledgements

- The author is grateful to many for their contribution to this effort. Significant
contributions came from Dr. Yanning Zhu in algorithm development and implementation,
Ms Candace Spalding for clinical coordination and assistance in developing elasticity
scanning techniques, and Dr. Patrick Von Behren for technical assistance and the loan of
the SONOLINE Elegra used in this research. We are also grateful for the financial
support of DAMD17-00-1-0596.

12




“ o~

References

'y Sariego, S Zrada, M Byrd, T Matsumoto, “Breast cancer in young patients,” Am J
Surg 1995; 170(3):243-5.

2 PG Peer, AL Verbeek, M MRavunac, et al., “Prognosis of younger and older patients
with early breast cancer,” Br J Cancer 1996; 73(3):382-5.

3 CP McPherson, KK Swenson, G Jolitz, CL Murray, “Survival among women ages 40-
49 years with breast carcinoma according to method of detection,” Cancer 1997,
79(10):1923-32.

* ME Costanza and KL Edmiston, “Breast cancer screening: Early recognition,” Comp
Ther 1997; 23(1):7-12.

SWT Yang, CO Mok, W King, et al., “Role of high frequency ultrasonography in the
evaluation of palpable breast masses in Chinese women: alternative to
mammography?” J Ultrasound Med 1996; 15(9):637-44.

¢ Boyd NF, Dite GS, Stone J, et al., “Heritability of mammographic density, a risk factor
for breast cancer.” N Engl J Med 2002; 347(12):886-94.

” Hou M-F, Chuang H-Y, Ou-Yang F, et al., “Comparison of breast mammography,
sonography and physical examination for screening women at high risk of breast cancer
in Taiwan,” Ultrasound Med Biol 2002; 28(4):415-20.

# Kolb TM, Lichy J, Newhouse JH, “Comparison of the performance of screening
mammography, physical examination, and breast US and evaluation of factors that
influence them: an analysis of 27,825 patient evaluations,” Radiology 2002;
225(1):165-75.

® Wang HC, Chen DR, Kao CH, et al., “Detecting breast cancer in mammographically
dense breasts: comparing technetium-99m tetrofosmin mammoscintigraphy and
ultrasonography,” Cancer Invest 2002; 20(7-8):932-8.

10 Saarenmaa I, Salminen T, Geiger U, et al., “The effect of age and density of the breast
on the sensitivity of breast cancer diagnostic by mammography and ultasonography,”
Breast Cancer Res Treat 2001; 67(2):117-23.

11 aya MB, Larson EB, Taplin SH, et al. “Effect of estrogen replacement therapy on the
specificity and sensitivity of screening mammography,” J Nat Cancer Inst 1996;
88(10):643-649. :

12 Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging of the elastic properties of tissue-
-a review. Ultrasound Med Biol 1996; 22(8):959-77.

3 Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T.
Elastography: ultrasonic estimation and imaging of the elastic properties of tissues.
Proc Inst Mech Eng 1999;213(3):203-33.

1 Tschoegl NW. The Phenomenological Theory of Linear Viscoelastic Behavior: An
Introduction. New York: Springer-Verlag, 1989.

' Fung YC. A First Course in Continuum Mechanics. Englewood Cliffs, NJ: Prentice
Hall, 1994.

16 Fung YC. Biomechanics: Mechanical Properties of Living Tissues. 2™ ed. New York:
Springer-Verlag, 1993.

7 Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and
prostate tissues under compression. Ultrason Imaging 1998; 20(4):260-74.

13




L

' Wellman PS, Dalton EP,Krag D, et al. “Tactile imaging of breast masses: first clinical
report,” Arch Surg 2001; 136(2):204-8.

" Sarvazyan A, “Mechanical Imaging: A new technology for medical diagnostics,” Int J
Med Inf 1998; 49(2):195-216.

2 Dickinson RJ and Hill CR, “Measurement of soft tissue motion using correlation
between A-scans,” Ultrasound Med Biol 1982; 8(3):263-71.

2! Wilson LS and Robinson DE, “Ultrasonic measurement of small displacements and
deformations of tissue,” Ultrason Imaging 1982; 4(1):71-82.

22 Krouskop TA, Dougherty DA, and Vinson FS, “A pulsed Doppler ultrasonic system
for making noninvasive measurement of the mechanical properties of soft tissue,” J
Rehabil Res Dev 1987; 24(2):1-8.

23 Yamakoshi Y, Sato J, and Sato T, “Ultrasonic imaging of internal vibration of soft
tissue under forced vibration,” IEEE Trans Ultrason, Ferroelec, Freq Contr 1990;
37(2):45-53.

2 Lerner RM, Huang SR, and Parker KJ, “Sonoelasticity images derived from ultrasound
signals in mechanically vibrated tissues,” Ultrasound Med Biol 1990; 16(3):231-9.

% Ophir J, Cespedes EI, Ponnekanti H, et al., “Elastography: A quantitative method for
imaging the elasticity of biological tissues,” Ultrason Imaging 1991; 13(2):111-34.

26 O’Donnell M, Skovoroda A, Shapo B, and Emelianov S, “Internal displacement and
strain imaging using ultrasonic speckle tracking,” IEEE Trans Ultrason, Ferroelec, Freq
Contr 1994; 41(3):314-25. ‘

27 Chaturvedi P, Insana MF, and Hall TJ, “2-D companding for noise reduction in strain
imaging,” IEEE Trans Ultrason, Ferroelec, Freq Contr 1998; 45(1):179-91.

28 Insana MF, Chaturvedi P, Hall TJ, and Bilgen M, “3-D companding using linear arrays
for improved strain imaging,” Proc IEEE Ultrason Symp 1997; 97CH36118:1435-8.

# Zhu Y and Hall TJ. A modified block matching method for real-time frechand strain
imaging, Ultrasonic Imaging 2002; 24(3):161-76.

3% Bilgen M and Insana MF, “Elastostatics of a spherical inclusion in homogeneous
biological media,” Phys Med Biol 1998; 43(1):1-20.

3! Bilgen M and Insana MF, “Deformation models and correlation analysis in
elastography,” J Acoust Soc Am 1996; 99(5):3212-24.

32 Insana MF, Cook LT, Bilgen M, Chaturvedi P, Zhu Y, “Maximum-likelihood approach
to strain imaging using ultrasound.” J Acoust Soc Am 2000; 107(3):1421-34.

33 Garra BS, Cespedes EI, Ophir J, et al., “Elastography of breast lesions: Initial clinical
results,” Radiology 1997; 202(1):79-86.

3 Hall TJ, Zhu Y, Spalding CS, “In vivo real-time freehand palpation imaging,”
Ultrasound Med Biol 2003; 29(3): 427—35.

3% Doyley M, Bamber JC, Fuechsel F, Bush NL, “A frechand elastographic imaging
approach for clinical breast imaging: system development and performance
evaluation,” Ultrasound Med Biol 2001; 27(10):1347-57.

36 Trahey GE, Allison JW, von Ramm OT, “Angle independent ultrasonic detection of
blood flow,” IEEE Trans Biomedical Eng 1987; 34: 965-7.

37 Merritt CR, Forsberg F, Liu J, Kallel F, “In vivo elastography in animal models:
Feasibility studies,” J Ultrasound Med 2002; 21:S:98, (abstract).

14




[

3 Lorenz A, Sommerfeld H-J, Garcia-Schurmann M, et al., “A new system for the
acquisition of ultrasonic multicompression strain images of the human prostate in
vivo,” IEEE Trans Ultrason, Ferroelec, Freq Control 1999; 46(5): 1147-1154.

3 Dutt V, Kinnick RR, Muthupillai R, Oliphant TE, Ehman RL, Greenleaf JF, “Acoustic
shear-wave imaging using echo ultrasound compared to magnetic resonance
elastography,” Ultrasound Med Biol 2000; 26(3):397-403.

40 Sandrin L, Tanter M, Catheline S, Fink M., “Shear modulus imaging with 2-D transient
elastography,” IEEE Trans Ultrason, Ferroelectr, Freq Control 2002; 49(4):426-35.

! Sandrin L, Tanter M, Gennisson JL, Catheline S, Fink M. “Shear elasticity probe for
soft tissues with 1-D transient elastography,” IEEE Trans Ultrason, Ferroelectr, Freq

" Control 2002; 49(4):436-46.

42 Skovoroda AR, Emelianov SY, O'Donnell M, “Tissue elasticity reconstruction based
on ultrasonic displacement and strain images,” IEEE Trans Ultrason, Ferroelectr, Freq
Contr 1995; 42(4):747-765.

43 Sumi C, Suzuki A, Nakayama K, “Estimation of shear modulus distribution in soft-
tissue from strain distribution,” IEEE Trans Biomed Eng 1995; 42:193-202.

* Kallel F and Bertrand M, “Tissue elasticity reconstruttion using linear perturbation
method,” IEEE Trans Med Imaging 1996; 15:299-313.

4 Doyley M, Meaney PM, Bamber JC, “Evaluation of an iterative reconstruction method
for quantitative elastography,” Phys Med Biol 2000; 45(6):1521-1540.

“Zhu Y, Hall TJ, and Jiang J. A Finite Element Approach for Young's Modulus
Reconstruction. IEEE Tran Med Imaging (accepted Jan 2003).

7 Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE, “On the feasibility of
remote palpation using acoustic radiation force,” J Acoust Soc Am 2001; 110(1):625-
34.

“8 Fatemi M, Greenleaf JF, “Application of radiation force in noncontact measurement of
the elastic parameters,” Ultrason Imaging 1999; 21(2):147-54.

* Tanter M, Bercoff J, Sandrin L, Fink M. “Ultrafast compound imaging for 2-D motion
vector estimation: application to transient elastography,” IEEE Trans Ultrason,
Ferroelectr, Freq Control 2002; 49(10):1363-74.

50 Fatemi M, Greenleaf JF, “Ultrasound-stimulated vibro-acoustic spectrography,”
Science 1998; 280(5360):82-5.

3! Fatemi M, Wold LE, Alizad A, Greenleaf JF, “Vibro-acoustic tissue mammography,”
IEEE Trans Med Imaging 2002; (1):1-8.

52 Chaturvedi P, Insana MF, and Hall TJ, “Testing the Limitations of 2-D Companding
for Strain Imaging Using Phantoms,” IEEE Trans Ultrason, Ferroelec, Freq Contr 1998;
45(4):1022-31.

53 Hein IA, O’Brien WD. Current time-domain methods for assessing tissue motion by
analysis from reflected ultrasound echoes—A review. IEEE Trans Ultrason, Ferroelec,

Freq Contr 1993; 40(2):84-102.

3 Carter GC. Coherence and Time-Delay Estimation: An Applied Tutorial for Research,
Development, Test, and Evaluation Engineers. New York: IEEE Press, 1993.

% Madsen EL, Frank, FR Krouskop TA, et al., Low-contrast spherical lesion phantoms
for assessing leastography performance. Ultrasonic Imaging 2003; 25:61 (abstract).

15




Lesion type 5% Precompression 20% Precompression
10%/s Strain Rate 20%/s Strain Rate
Normal Fat 19+7 20+ 6
Normal Glandular 33+11 57+ 19
Fibrous 107 + 32 233+ 59
Ductal Carcinoma In Situ 25+4 301 + 58
Invasive Ductal Carcinoma 93+33 490 £ 112

Table 1. Results of measuring the elastic modulus of in vitro breast tissue samples for a
variety of breast tissue types with two different strain ranges and strain rates. Ductal
carcinoma has the largest difference for modulus measurements in these two conditions
suggesting it has the most nonlinear stress-strain relationship among tissues measured.
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Figure 1. Introductory mechanics describes the behavior of a spring supporting different
masses. The diagram illustrates how one spring would be stretched to two different
lengths by two different masses. Hooke’s law describes this behavior and can be used to
characterize the spring under small deformations. Newton’s second law equates a force,
F, with a mass, m, and an acceleration, a. A known mass suspended from a spring exerts
a known force due to the acceleration of gravity. Hooke’s law relates the difference in
stretch of the spring, Ax, due to the change of force, AF, resulting from suspending
different masses. The proportionality constant, k, characterizes the stiffness of the spring.
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Figure 2. Palpation can be approximated with a simulation tool (FEA). The center image
is the axial stress distribution resulting from a uniform displacement of the top surface of
a block containing a spherical object. The plot on the right shows profiles of the stress

. distribution across the lines in the center image. A large variation in the stress profile is

found for the profile close to the spherical object. This simulates a sphere being near the
surface of the block. As the profile moves further away from the sphere, the variation in
stress across the profile decreases suggesting the sphere would be more difficult to
palpate as it is placed deeper in the block.
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Figure 3. Images of the mechanical strain in the axial direction for a gelatin phantom with
three cylinders which are three times stiffer than the background. The top row shows
strain images obtained with 1-D tracking using cross correlation. The bottom row shows
images obtained with 2-D companding (2-D motion tracking). The applied deformation
(top and bottom rows), from left to right, is 0.6%, 1.2%, 2.4% 3.6%, 4.8% and 6.0%
strain. Lateral expansion (bulging) occurring with axial compression causes the echo A-
lines to not match and the echo signals to decorrelate with 1-D tracking. 2-D tracking is
able to track the lateral as well as axial motion to obtain higher contrast-to-noise strain
images.
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Figure 4. Images acquired near the edge (in elevation, perpendicular to the image plane)
of a gelatin phantom with varying deformation (from left to right, 0.6%, 1.2% and 2.4%
axial strain). The phantom was bound in elevation at the bottom and slid freely at the top.
As the phantom was deformed, the top slid out of the image plane in elevation resulting
in echo signal decorrelation. Increasing the deformation caused greater decorrelation.

20




2

g

Amplitude (digitization units)

:

£
Ez

100
Time (samples)

&
U

Normalized Correlation
o

&
ot

i DT ) 1% 150

Correlation Lag (samgloes)
Figure 5. On top is a plot of the pre-deformation (red dashed line) and post-deformation
(1.5% axial strain, solid blue line) for a 3mm segment (140 rf samples) of the echo
signals from the center of a gelatin phantom. The post-deformation signal has been
shifted in time to match the pre-deformation signal as well as possible. The deformation
has caused decorrelation in the echo signal which reduces coherence (cross correlation
coefficient = 0.87). Below is a plot of the cross correlation function comparing the pre-
and time-delayed post-deformation rf echo signals shown above. The single large positive
peak suggests there is little ambiguity in the correct delay required to match these signals.

21




wt

Amplitude (digitization units)

6
Time (samples)

e o ©
DN be N

Normalized Correlétion
N

L & o
> o

b
Loe
=3

s ) 5 10
Correlation Lag (samples)

Figure 6. On top is a plot of the pre-deformation (red dashed line) and post-deformation
(1.5% axial strain, solid blue line) for a 0.24mm segment (11 rf samples) of the echo
signals from the center of a gelatin phantom. The post-deformation signal has been
shifted in time to match the pre-deformation signal as well as possible. Little
decorrelation in the echo signals within this short echo segment results in high coherence
(cross correlation coefficient = 0.96). Below is a plot of the cross correlation function
comparing the pre- and time-delayed post-deformation rf echo signals shown above.

22




'y
.-

Amplitnde (digitizaion vnits)
-

H

b

o

Y

Amplitude digitization units)

,
&
o B

28 36

R
Tinmc (samples}

38

:

£

]

Amplitade {digitization units)
£

g

2%

-4

R
Time (sampless

g

g

A ST FE

s p-
Time (samnples)

33

Amplitude (digitization units)

s,

1

14 n
Time {samples)

3

E k

Wk

, Amplitude (digilization units)

\/

i

15 p- ]
Time {(samples)

25 3 35

Figure 7. Plots of the pre-deformation (solid blue) and the time-shifted post-deformation
(1.5% strain, dashed red) rf echo signal from five adjacent A-lines obtained near the
center of a gelatin phantom. Using multiple short line segments reduces decorrelation
within the data segment while simultaneously reducing the ambiguity in time-delay

estimation.
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Figure 8. In the left column are plots of the pre-deformation (red dashed line) and post-
deformation (1.5% axial strain, solid blue line) for a 0.24mm segment of the echo signals
acquired at 36MHz sampling frequency up-sampled to 72MHz (top row) and 144MHz
(bottom row). The post-deformation signal has been shifted in time to match the pre-
deformation signal as well as possible. As the effective sampling interval is reduced, the
integer time delay error is also reduced allowing for greater waveform coherence
(correlation coefficients of 0.965 (Figure 6), 0.978, and 0.998 were obtained with
36MHz, 72MHz and 144MHz sampling, respectively).
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Figure 9. B-mode and elasticity (mechanical strain) images of a 3mm diameter in vivo
breast cyst demonstrating that small in vivo structures are resolvable in strain images.
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Figure 10. B-mode and strain images of a typical fibroadenoma at two different amounts
of deformation (preload). For both elasticity images the average strain in the image is
about 1.2%. The image pair on the left was acquired with the ultrasound transducer just
barely in contact with the skin surface. At low preload fibroadenomas typically are stiff
compared to their surrounding glandular tissue. As the preload increases the strain image
contrast of the fibroadenoma decreases and the lesion becomes nearly equal stiffness
compared to the surrounding tissue.
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Figure 11. A B-mode and strain image pair of a fibroadenoma. The lesion is traced in the
B-mode image and that tracing is displayed in the strain image. The lesion size and shape -

in the two image types are very similar.
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Figure 12. A B-mode and strain image pair of a scirrhous invasive ductal carcinoma. The
lesion is traced in the B-mode image and that tracing is displayed in the strain image. The
lesion size is larger in the strain image than in the B-mode image.
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Figure 13. A plot of the lesion area measured in strain images versus the same lesion
measured in the corresponding B-mode images for cysts, fibroadenomas and invasive
ductal carcinomas. The average result of five observers is plotted and error bars represent
standard deviations among those measurements. The dashed line represents equal area in
both image types. e
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